
www.manaraa.com

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

THESIS PRESENTED TO
ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

IN PARTIAL FULFILLEMENT OF THE REQUIREMENTS FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY

Ph. D.

BY
Mónica VILLAVICENCIO

DEVELOPMENT OF A FRAMEWORK FOR THE EDUCATION OF SOFTWARE
MEASUREMENT IN SOFTWARE ENGINEERING UNDERGRADUATE PROGRAMS

MONTREAL, JUNE 17, 2014

 Mónica Villavicencio, 2014

www.manaraa.com

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3642653
Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

UMI Number: 3642653

www.manaraa.com

This Creative Commons licence allows readers to download this work and share it with others as long as the
author is credited. The content of this work can’t be modified in any way or used commercially.

www.manaraa.com

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mr. Alain Abran, Thesis Supervisor
Software Engineering and Information Technology Department at École de Technologie
Supérieure

Mr. Mohamed Cheriet, President of the Board of Examiners
Automated Manufacturing Engineering Department at École de Technologie Supérieure

Mrs. Sylvie Rate, Member of the jury
Software Engineering and Information Technology Department at École de Technologie
Supérieure

Mr. Hakim Lounis, External Evaluator
Imformatics Department at Université du Québec à Montréal

THIS THESIS WAS PRENSENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND PUBLIC

ON JUNE 10, 2014

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

www.manaraa.com

www.manaraa.com

ACKNOWLEDGMENT

There are several people who definitely deserve my sincere gratitude as they have been very

supportive during my doctoral studies. It would have been impossible to develop the ideas

presented in this dissertation without their support, comments, suggestions, and advice.

First, I would like to thank my thesis director, Dr. Alain Abran, as he has been an excellent

reviewer and counselor, and a very supportive person; certainly, an example to follow. Many

thanks to him for all the time he devoted to provide me guidance, as well as to review and

comment all the documents produced through this thesis work.

I also thank Charles Symons for reviewing the case study and all the participants of my

research studies for sharing with me valuable ideas, comments, knowledge, and expertise.

My thanks to my friends, colleagues and master students from ESPOL and ETS for all their

help and support offered during my studies, especially Vanessa for developing the online

version of the questionnaires used for my research studies.

Special thanks to my parents, brother and sister for all their kindness, support and love

demonstrated at all times during my doctoral studies. Thanks a lot mom and dad for being

with me every time I needed your help.

Finally, I express my immense gratitude to my love, Edgar, and my wonderful children:

Andrés, Emily and María Belén. Edgar: I want to tell you that you deserve all my

appreciation for your help, understanding, support and unconditional love. At last but not

least, I am very grateful to God for having all of you in my life and for being my source of

motivation and determination to reach this goal.

www.manaraa.com

www.manaraa.com

DÉVELOPPEMENT D'UN CADRE POUR L'ÉDUCATION DE LA MESURE DES
LOGICIELS DANS LES PROGRAMMES DE GÉNIE LOGICIEL AU NIVEAU DU

PREMIER CYCLE

Mónica VILLAVICENCIO

RÉSUMÉ

Les programmes de mesure des logiciels sont peu adoptés dans les organisations et il y a un
manque d'attention à la mesure des logiciels dans l'enseignement supérieur. Ce travail de
recherche vise à créer la base pour l'amélioration de l'éducation en mesure des logiciels dans
les universités, en particulier dans les programmes de génie logiciel au niveau du premier
cycle. Le but ultime de ce travail est de faciliter l'adoption de programmes de mesure dans les
organisations produisant des logiciels.

Cette recherche aborde cette problématique en identifiant les sujets qui devraient être
prioritaires pour les étudiants de premier cycle, et en élaborant un cadre éducatif sur la base
de l'approche constructiviste et de la taxonomie de Bloom afin de fournir des lignes
directrices pour les professeurs d'université.

Cette thèse inclue plusieurs activités de recherche, incluant un examen complet de la
littérature, une enquête en ligne pour identifier les tendances actuelles dans l'enseignement de
la mesure des logiciels, une étude Delphi pour identifier les priorités en matière d'éducation
de mesure de logiciels pour les étudiants de premier cycle, et une évaluation du cadre
pédagogique par des professeurs universitaires.

Les principaux résultats de ces études sont:

• Les experts dans le domaine ont identifiés cinq thèmes de mesure de logiciels
essentiels (priorités) qui devraient être enseignés aux étudiants de premier cycle: les
concepts de base de la mesure des logiciels, le processus de mesure, les techniques de
mesure des logiciels, des mesures de gestion des logiciels, et des mesures pour la
phase des exigences. Pour chacun de ces thèmes, les experts ont également identifié
les niveaux d'apprentissage qui devraient être atteints par les élèves, selon la
taxonomie de Bloom. De plus, les participants ont suggéré la nécessité d'inculquer
aux élèves le développement de quatre compétences importantes au cours de leurs
études universitaires, y compris: la pensée critique, la communication orale et écrite
et le travail d'équipe. Ces compétences visent à compléter la connaissance et la
pratique des élèves de la mesure du logiciel.

• La conception d’un cadre éducatif de la mesure du logiciel pour rencontrer ces
exigences.

www.manaraa.com

VIII

• Les professeurs d'université qui ont évalué le cadre proposé ont émis des avis
favorables concernant son utilité pour l'enseignement de la mesure des logiciels et
pour faciliter l'atteinte des résultats d'apprentissage par les étudiants de premier cycle.

• Un site Web conçu pour promouvoir l'éducation sur la mesure de logiciels
http://software-measurement-education.espol.edu.ec/

Mots-clés: génie logiciel, la mesure des logiciels, l'enseignement supérieur, le
constructivisme, la taxonomie de Bloom, cadre éducatif.

www.manaraa.com

DEVELOPMENT OF A FRAMEWORK FOR THE EDUCATION OF SOFTWARE
MEASUREMENT IN SOFTWARE ENGINEERING UNDERGRADUATE

PROGRAMS

Mónica VILLAVICENCIO

ABSTRACT

Software measurement programs are hardly adopted in organizations and there is a lack of
attention to software measurement in higher education. This research work aims at creating
the basis for the enhancement of software measurement education in universities, specifically
in software engineering programs at the undergraduate level. The ultimate goal of this work
is to facilitate the adoption of software measurement programs in software related
organizations.

This research project tackles this issue by identifying the software measurement topics that
should be prioritized for undergraduate students and developing an educational framework
on the basis of the constructivist approach and the Bloom`s taxonomy to provide guidelines
to university teachers. By doing so, university teachers will be provided with tools and
approaches to pursue the achievement of learning outcomes by students being introduced to
software measurement tasks.

This research project required a number of investigations: a comprehensive literature review
and a web survey to identify current practices in the teaching of software measurement; a
Delphi study to identify priorities in software measurement education for undergraduate
students; and an evaluation of the proposed educational framework by university teachers to
determine the extent to which it can be adopted.

The key results are:

• Experts in the field agreed in identifying five essential software measurement topics
(priorities) that should be taught to undergraduate students: basic concepts of
software measurement; the measurement process; software measurement techniques;
software management measures; and measures for the requirement phase. For each of
these topics, the participating experts also identified the levels of learning expected to
be reached by students, according to the Bloom's taxonomy. Moreover, they
suggested the need for instilling in students the development of four important skills
during their university studies, including: critical thinking; oral and written
communication; and team work. These skills are aimed at complementing the
students’ knowledge and practice of software measurement.

• The design of an educational framework for the teaching of software measurement.
• University teachers evaluating the proposed framework gave favorable opinions

regarding its usefulness for teaching software measurement and for facilitating the
achievement of learning outcomes by undergraduate students.

www.manaraa.com

X

• A website designed to promote the education on software measurement
http://software-measurement-education.espol.edu.ec/

Keywords: software engineering, software measurement, higher education, constructivism,
Bloom's taxonomy, educational framework

www.manaraa.com

TABLE OF CONTENTS

Page
INTRODUCTION ..1

CHAPTER 1 SOFTWARE MEASUREMENT IN SOFTWRE ENGINEEERING
EDUCATION ..3

1.1 Bodies of Knowledge ...3
1.1.1 The curriculum guidelines SE2004 ... 3
1.1.2 SWEBOK and the Software Measurement body of knowledge 7

1.2 Educational taxonomies and constructivism ..9
1.2.1 The Bloom's and SOLO Taxonomies ... 9
1.2.2 Constructive Alignment and Experiential Learning 12
1.2.3 Constructivist teaching.. 14
1.2.4 Skills and their development ... 16

1.3 Initiatives in software measurement education ..17
1.3.1 The METKIT project .. 18
1.3.2 The X-MED game ... 19
1.3.3 The Play' n' Learn approach .. 20
1.3.4 Visual learning techniques for software measurement 21

CHAPTER 2 RESEARCH OBJECTIVES AND METHODOLOGY23
2.1 Research motivation ...23
2.2 Research goal ...24
2.3 Research objectives ..24
2.4 Originality of the proposed research ..24
2.5 Target audiences of this research ...25
2.6 Overview of the research methodology ...26

CHAPTER 3 STATE OF THE ART OF SOFTWARE MEASUREMENT IN HIGHER
EDUCATION AND IDENTIFICATION OF PRIORITIES29

3.1 Literature survey ..29
3.1.1 The objective of the literature survey ... 29
3.1.2 The selection of papers ... 29
3.1.3 Results ... 30

3.2 Web survey ..31
3.2.1 Web survey for teachers .. 32

3.2.1.1 Objectives of this survey .. 32
3.2.1.2 Methodology .. 32
3.2.1.3 Results .. 33

3.2.2 Web survey for practitioners ... 34
3.2.2.1 The objective of this survey ... 34
3.2.2.2 Methodology .. 35
3.2.2.3 Results .. 35

3.3 The Delphi study to identify priorities ...36

www.manaraa.com

XII

3.3.1 The objective of the Delphi study ... 37
3.3.2 Methodology ... 37
3.3.3 Results ... 41

3.3.3.1 Results from rounds 1 to 3 ... 41
3.3.3.2 Results from the verification phase .. 47

3.4 Interview with teachers ..57
3.5 Consolidation of results ...60

CHAPTER 4 A FRAMEWORK FOR THE EDUCATION OF SOFTWARE
MEASUREMENT ...63

4.1 Framework definition...63
4.2 Objective of the framework ...63
4.3 Structure of the framework ..64
4.4 Objectives of the software measurement course for beginners66
4.5 Pre-requisites..66
4.6 Applicability of the framework ..66

4.6.1 Example: Measures for the requirements phase 68
4.6.1.1 Suggested content .. 68
4.6.1.2 Intended Learning Outcomes ... 77
4.6.1.3 Teaching and Learning Activities .. 78
4.6.1.4 Assessment Tasks .. 85

4.7 Achieving meaningful learning and developing skills via the framework95

CHAPTER 5 EVALUATION OF THE PROPOSED FRAMEWORK97
5.1 Purpose and Scope of this evaluation ..97
5.2 Evaluation criteria ..97
5.3 Instruments ...101

5.3.1 Instrument designed for learners ... 101
5.3.2 Instrument designed for teachers .. 103

5.4 Pre-test of the instruments ...107
5.4.1 Pre-test of the instrument #1 - for learners ... 107
5.4.2 Pre-test of the instrument #2 - for teachers ... 108

5.5 Data collection and findings from instrument #1 (learners)109
5.5.1 Data collection from potential learners ... 109
5.5.2 Findings... 110

5.6 Data collection and findings from instrument #2(university teachers)111
5.6.1 Data collection .. 111
5.6.2 Findings... 114

CHAPTER 6 CONTRIBUTIONS AND FUTURE WORK ..119
6.1 Contributions..119
6.2 Implications for future research ...121
6.3 Research impact ...123
6.4 Limitations of this research ..124

www.manaraa.com

XIII

ANNEX I LIST OF APPENDICES ..126

LIST OF BIBLIOGRAPHIC REFERENCES ...131

www.manaraa.com

www.manaraa.com

LIST OF TABLES

Page

Table 1.1 SEEK Knowledge Areas, Units and topics related to measurement6

Table 1.2 Relationship of bodies of knowledge with respect to software
measurement topics. ..8

Table 1.3 Characteristics of the Bloom and SOLO taxonomies11

Table 3.1 Number of participants of the Delphi study ..40

Table 3.2 Ranking of software measurement topics for undergraduates.....................43

Table 3.3 Preference of Levels of Learning per topic and panel46

Table 3.4 Ranking of skills needed to complement education in software
measurement ..47

Table 3.5 Verification of the ranking of the software measurement topics50

Table 3.6 Verification of the selection of levels of learning per topic51

Table 3.7 Verification of the ranking of the complementary skills52

Table 3.8 Methods preferred for teaching software measurement52

Table 3.9 Resources for teaching software measurement ...53

Table 3.10 Impediments for adopting an active learning approach for teaching
software measurement ...54

Table 4.1 The educational framework at a glance ...67

Table 4.2 Example of counting Function Points with the COSMIC method76

Table 4.3 Application of the Cornell's flow learning ..80

Table 4.4 Rubric for an open question (adapted from (Biggs and Tang, 2007))89

Table 4.5 Rubric for functional size measurement ..92

Table 4.6 Prompt for a project that includes functional size measurement94

Table 5.1 Findings of the evaluation performed with instrument #1(learners)112

Table 5.2 Findings of the evaluation performed with instrument #1(learners)113

www.manaraa.com

XVI

Table 5.3 Correlation matrix ...114

Table 5.4 Regression results - Dependent variable: USEF..115

Table 5.5 Regression results - Dependent variable: WILL116

Table 5.6 Regression results - Dependent variable: ENHA117

www.manaraa.com

LIST OF FIGURES

Page

Figure 2.1 Overview of the research methodology ...28

Figure 3.1 General view of the Delphi study - adapted from (Okoli and
Pawlowski, 2004) ..38

Figure 3.2 Layers of the software measurement topics ..61

Figure 3.3 Software measurement topics considered as priorities in software
engineering education for undergraduates ...62

Figure 4.1 Structure of the educational framework ..65

Figure 4.2 Example - Software measures for the requirements phase69

Figure 4.3 General representation of the COSMIC Functional Size
Measurement Method ...72

Figure 4.4 Example of the COSMIC method ...75

Figure 4.5 AlternativesTeaching and Learning Activities (TLAs) and
Assessment Tasks (ATs) to reach the Expected Learning Outcomes
(ILOs) ..79

Figure 4.6 Example of the slides for a lecture of FSM - part 182

Figure 4.7 Example of the slides for a lecture of FSM - part 282

Figure 4.8 Example of an exercise of FSM ..85

Figure 5.1 Detailed activities for evaluating the proposed educational framework98

Figure 5.2 Model to evaluate the proposed educational framework, adapted from
Gopal et al. 2002 ...99

www.manaraa.com

www.manaraa.com

LIST OF ABREVIATIONS

ACM Association for Computing Machinery

CFP COSMIC Function Point

CMM Capability Maturity Model

CMMI Capability Maturity Model Integration

DC Degree of Consensus

DG Data Group

DM Data Movement

GQM Goal question metric

GQIM Goal question indicator metric

ISBSG International Software Benchmarking Standards Group

PMBOK Project Management Body Of Knowledge

PSM Practical Software and Systems Measurement

PSP Personal Software Process

SEEK Software Engineering Education Knowledge

SE2004 Curriculum guidelines for software engineering undergraduate programs

SWEBOK SoftWare Engineering Body Of Knowledge

www.manaraa.com

www.manaraa.com

INTRODUCTION

Measurement and quantitative analysis are fundamental in engineering. In the software

engineering discipline, measurement is essential for software process improvement and

certification purposes. Therefore, topics related to measurement are explicitly included in the

existing software engineering curriculum guidelines and bodies of knowledge. Despite its

importance, little has been done in academic settings to tackle the teaching of software

measurement in undergraduate programs: in general, the literature related to software

measurement in academia is focused on experimental studies to test techniques, tools and

learning objects but with only slight attention in the achievement of learning outcomes by

university students.

To tackle this problem, this thesis presents the design of an educational framework to

facilitate the teaching and learning process of software measurement topics at the

undergraduate level, which will address the key topics (priorities for undergrads) that

students must learn in order to be able to support software measurement activities in the

software organizations hiring them.

This thesis is organized into six chapters and 30 appendices.

Chapter 1 summarizes the literature review of the bodies of knowledge, curriculum

guidelines, and previous academic initiatives related to software measurement. In addition,

this chapter presents educational concepts and taxonomies that will be applied for designing

the framework.

Chapter 2 presents the motivation for this research work, the objectives of the thesis, and a

general view of the methodology designed to address them.

www.manaraa.com

2

Chapter 3 presents the studies conducted prior the development of the framework, which

provided information to build it according to the needs of university teachers and software

measurement practitioners.

Chapter 4 describes the design of the proposed educational framework and provides one

example of how to apply it for teaching software measurement to undergraduate students.

Chapter 5 presents the evaluation of the proposed framework and the studies conducted to

perform such evaluation.

Chapter 6 presents the contributions of this research work, the foreseen improvements and

future work.

Finally, the appendices includes eight publications: six for conferences and two for journals

(one published and one submitted), the approvals of the ethics committee to conduct the

studies with university teachers and practitioners, the questionnaires used for gathering

information, extra examples of the applicability of the proposed educational framework; and

suggestions for improvements to the current documents of the COSMIC-ISO 19761 software

measurement method and suggestions for the related bodies of knowledge.

www.manaraa.com

CHAPTER 1

SOFTWARE MEASUREMENT IN SOFTWARE ENGINEERING EDUCATION

This chapter summarizes the bodies of knowledge related to software measurement, the

taxonomies and concepts associated to education, and previous work on the teaching of

software measurement in higher education.

1.1 Bodies of Knowledge

This section presents three bodies of knowledge relevant for the education on software

measurement: the Software Engineering Education Body of Knowledge (SEEK), the

Software Engineering Body of Knowledge (SWEBOK), and the Software Measurement

Body of Knowledge.

1.1.1 The curriculum guidelines SE2004

In 2004, the IEEE Computer Society and the Association for Computing Machinery (ACM)

published guidelines for academic institutions and accreditation agencies to facilitate the

design of undergraduate software engineering programs - SE2004 (IEEE ACM, 2004).

These guidelines propose to educators the content of programs and the way of teaching them

in different contexts (i.e. software engineering, computer science, and engineering). In

addition, the guidelines suggest that a software engineer has to acquire technical and

management skills to deal with software development processes from a holistic perspective

as well as issues related to project management, product quality, standards and teamwork

abilities. To instill these management and technical skills in undergraduate students, the

Software Engineering Education Knowledge (SEEK) was introduced on the basis of the

Software Engineering Body of Knowledge (SWEBOK 2004), the Project Management Body

of Knowledge (PMBOK), the ACM report of Computing Curriculum, and two specific

guidelines for undergraduate software engineering education (IEEE ACM, 2004).

www.manaraa.com

4

Ten knowledge areas were selected to become part of the SEEK:

Computing Essentials

Mathematical & Engineering Fundamentals

Professional Practice

Software Modeling & Analysis

Software Design

Software Verification & Validation

Software Evolution

Software Process

Software Quality

Software Management

For each knowledge area of SEEK, the following information is provided in the curriculum

guidelines SE2004:

1) Short description

2) Units and their topics

3) Number of suggested hours per unit

4) The level of knowledge per topic according to the taxonomy of Bloom. Three levels out

of six were considered:

• K: Knowledge

• C: Comprehension

• A: Application

The relevance of the topics

• E: Essential (part of the core)

• D: Desirable (if possible, it should be included as a core in specialized programs; or

considered as elective)

• O: Optional (elective course)

In the SE2004, seven expected students’ outcomes are proposed for an undergraduate

curriculum in software engineering and are summarized into three, as follows:

www.manaraa.com

5

• Acquiring knowledge (ie. models, techniques, software lifecycle, experience in different

application domains) and skills (ie. teamwork, leadership, negotiation, good

communication) to start working as a software engineer considering existing approaches

as well as ethical, social, legal and economic concerns.

• Being capable to work under some constraints (cost, time, knowledge, etc) and exposed

to changes in requirements.

• Becoming a self learner for continuous professional development.

Besides the outcomes, seven desirable characteristics of software engineers are stated. One of

these is: “Engineers measure things, and when appropriate, work quantitatively; they

calibrate and validate their measurements; and they use approximations based on experience

and empirical data” (IEEE ACM, 2004). Due to these desirable characteristics, SEEK

includes software measurement topics into their knowledge areas, which are shown in Table

1.1. The column L of this table shows the level of knowledge per topic according to the

taxonomy of Bloom (K - knowledge, C - comprehension, A - application); and the column R

represents the relevance of the topics (E - essential, D - desirable, O - optional). As it can be

noticed from table 1.1, all the software measurement topics are considered as essential (E).

To the best of our knowledge, the curriculum guidelines for software engineering

undergraduate programs (SE2004) have not been updated by the IEEE and ACM since 2004.

www.manaraa.com

6

Table 1.1 SEEK Knowledge Areas, Units and topics related to measurement

SEEK Knowledge
Areas

Knowledge
Units

Topics L R

Mathematical and
Engineering
Fundamentals

Engineering
foundations for
software

Measurement and metrics K E

Theory of measurement C E

Software Design
Design support
tools and
evaluation

Measures of design
attributes (e.g. coupling,
cohesion, etc.)

K E

Design metrics (e.g.
architectural factors,
interpretation, etc.)

A E

Software
Verification and
Validation

V&V
terminology and
foundations

Metrics & Measurement
(e.g. reliability, usability,
etc.)

K E

Problem analysis
and reporting

Analyzing failure reports C E
Defect analysis K E

Software Process

Process concepts

Measurement and analysis
of software processes. C E

Quality analysis and control
(e.g. defect prevention,
quality metrics, root cause
analysis, etc.)

C E

Process
Implementation

Individual software process
(model, definition,
measurement, analysis,
improvement)

C E

Team process (model,
definition, organization,
measurement, analysis,
improvement)

C E

Software Quality

Software quality
processes

Software quality models
and metrics C E

Product assurance
Quality product metrics and
measurement C E

Software
Management

Project planning Effort estimation A E

Project control
Measurement and analysis
of results C E

www.manaraa.com

7

1.1.2 SWEBOK and the Software Measurement Body of Knowledge

SWEBOK (Software Engineering Body of Knowledge) is a guide that portrays the contents

of the software engineering discipline, which provides a foundation for curriculum

development (Abran, Bourque and Dupuis, 2004). The 2004 version of the guide includes 10

knowledge areas in which topics related to software measurement are dispersed all over

them. Later, a proposal was put forward to have a full knowledge area (KA) to embrace

software measurement; therefore, a Software Measurement Body of Knowledge was

developed (Abran, April and Buglione, 2010). The document of this new body of knowledge,

included in the encyclopedia of software engineering (Abran, April and Buglione, 2010),

integrates and extends the measurement-related knowledge contained throughout SWEBOK

2004.

The Software Measurement Body of Knowledge distinguishes six major topics of software

measurement: 1) Basic concepts; 2) Measurement process; 3) Measures by software life

cycle (SLC) phase; 4) Techniques and tools; 5) Quantitative data; and 6) Measurement

standards. Each of these topics is briefly explained: each has been divided into subtopics, and

includes references.

At the time this thesis was written, a new version of the SWEBOK guide (SWEBOK v3) was

under revision. This new version also includes software measurement topics spread

throughout 15 knowledge areas - five new areas have been added since the 2004 version

(Bourque, 2013).

Table 1.2 shows the relationship among the Software Engineering Education Knowledge

(SEEK), the Software Measurement Body of Knowledge, and SWEBOK v3.

www.manaraa.com

8

Table 1.2 Relationship of bodies of knowledge with respect to software measurement topics.

Knowledge Areas Topics Major Topics Sub Topics
Knowledge

Areas
Topics

Measurement and metrics Foundations

Theory of measurement
Definition and
concepts

Measures of design
attributes (e.g. coupling,
cohesion,etc.)

Measures by
SLC

Software
design

Software
design

Software design
quality analysis
and evaluation

Design metrics (e.g.
architectural factors,
interpretation, etc.)

N/F N/F N/F N/F

Metrics & Measurement
(e.g. reliability, usability,
etc.)

Analyzing failure reports

Defect analysis

Quality analysis and
control (e.g. defect
prevention, quality metrics,
root cause analysis, etc.)

Measurement
techniques

Software
measurement

Individual software
process (model, definition,
measurement,analysis,
improvement)

Measurement
techniques

Software process
definition

Team process (model,
definition, organization,
measurement,analysis,
improvement)

N/F N/F
Software process
definition

Software quality models
and metrics

Quality product metrics
and measurement

Software
construction
Software
testing

Techniques and
tools

Measurement
tools

Measurement and analysis
of results

Measurement
Process

Perform,
Evaluate the
measurement
process

Software
engineering
measurement

N/F: Not Found

Effort estimation

Software Management
Software
engineering
management

Software
testing

Test related
measures

Techniques and
Tools

Software
quality

Practical
considerations -
Software Quality
Measurement

Software
quality

Software project
planning

Measures by
SLC

Software
engineering
process

Measures by
SLC

Measures by
SLC

SWEBOK v3

Measurement
Engineering
foundations

Software
testing

Software Quality

Software Process

Mathematical and
Engineering
Fundamentals

Software Design

Software Verification
and Validation

Software Engineering Education Knowledge
(SEEK) and SE2004

Software Measurement Body of
Knowledge

Basic concepts

www.manaraa.com

9

1.2 Educational taxonomies and constructivism

1.2.1 The Bloom's and SOLO Taxonomies

Since the appearance of the constructivist philosophy of education, a number of taxonomies

have been proposed. Reigeluth and Carr-Chellman (2009) compared five of those taxonomies

(1. Bloom, 2.Gagné, 3.Ausubel, 4.Merril, and 5.Reigeluth) and found that all of them share

commonalities in learning outcomes. For example: the level of knowledge in the original

taxonomy of Bloom is referred by Gagné as verbal information; by Ausubel as rote learning,

by Merril as remember verbatim; and by Reigeluth as memorize information (Reigeluth and

Carr-Chellman, 2009). Although several taxonomies have been created in the educational

field, the most generally referred in educational research for higher education is the Bloom's

taxonomy. Indeed, this taxonomy was used by ACM and IEEE to develop the curriculum

guidelines for the software engineering and computer science university programs (IEEE

ACM, 2004; Integrated Software & Systems Engineering Curriculum (iSSEc) project, 2009a;

The Joint Task Force on Computing Curricula Association for Computing Machinery IEEE-

Computer Society, 2013).

This doctoral work mainly used the revised version of the Bloom's taxonomy (Anderson et

al., 2001) in order to be aligned with the curriculum guidelines and to be able to compare the

further application of our educational framework -explained in chapter 4 - with other studies

in higher education. Notwithstanding, this work also took into consideration the SOLO

(Structure of the Observed Learning Outcome) taxonomy (Biggs, 1995; Biggs and Tang,

2007) to complement the Bloom's approach, especially in highlighting the importance of the

constructive alignment and assessing the learning outcomes. The characteristics of both

taxonomies (Bloom and SOLO) are presented in Table 1.3.

The Bloom's taxonomy has two dimensions: the knowledge dimension and the cognitive

process dimension. The first dimension (knowledge) corresponds to the type of knowledge

that students can learn: facts, concepts, procedures; and how they learn (metacognition). The

www.manaraa.com

10

second dimension (cognitive) corresponds to the levels of learning that students can reach.

This dimension has six levels of learning or categories, as follows (Anderson et al., 2001):

1) Remember: Retrieve information from long term memory.

2) Understand: Construct meaning from what the learner has heard, seen or read in class

(lectures) or in books or computers.

3) Apply: Use a procedure in a given situation.

4) Analyze: Break material into its constituent parts, and determine how the parts relate to

one another and to an overall structure or purpose.

5) Evaluate: Make judgments based on criteria and standards.

6) Create: Put elements together or reorganize them to create something new and functional.

Each of these levels is subdivided into cognitive processes, giving a total of 19 sub processes.

For example: the remember category has two possible cognitive processes: recognizing and

recalling. A complete list of cognitive processes is available on the cover pages of the

Bloom's taxonomy book (Anderson et al., 2001).

The SOLO taxonomy is categorized into types of knowledge and levels of understanding.

The types of knowledge are: declarative (i.e. knowing about, knowing what); and functioning

(i.e. knowing how and when; that is, use declarative knowledge to solve problems, design,

etc.). According to the authors of this taxonomy, as students learn, quantitative and

qualitative changes are observed. Quantitative changes refer to the amount of details that

students (learners) are able to provide; and qualitative changes refer to the integration of

those details into a structural pattern. This means that the understanding becomes more

structured and articulated as it develops. Then, this taxonomy considers five levels of

understanding (Biggs, 1995; Biggs and Tang, 2007):

1) Prestructural: No understanding (information provided by students make no sense)

2) Unistructural: Few details are provided (information is simple and obvious)

3) Multistructural: More details are provided (quantitative increase)

4) Relational: There is a restructure or integration of components (qualitative increase)

www.manaraa.com

11

5) Extended abstract: A new dimension of the relational level is perceived (connections that

go beyond of the subject).

Table 1.3 Characteristics of the Bloom and SOLO taxonomies

Characteristics
Revision of Bloom's

taxonomy
SOLO taxonomy (Structure of the

Observed Learning Outcomes)

Terminology used for
learning objectives

Educational objectives Intended learning outcomes (ILO)

Ways to formulate
learning objectives

VERB - Intended cognitive
process; NOUN - Knowledge
that students are expected to
acquire or construct.

VERB - level of understanding or
performance intended; CONTENT - the
topics that the verb is meant to address;
CONTEXT - the content discipline in
which the verb is to be deployed.

Verbs for formulating
learning objectives

There is a set of suggested
verbs for every level of
cognition.

A general list of verbs is provided without
categorization.

Example of an
objective/outcome

"Create a commercial about a
common food product that
reflects understandings of how
commercials are designed to
influence potencial clients"

"Design and develop particular constructs
and models to support various levels of
international business activities using
different tools such as Microsoft Front
Page, Microsoft access and Excel"

Constructivism
alignment

Yes Yes

Focus
Planning curriculum,
instruction and assessment.

Qualitative assessment: study of the
learning outcomes based on the details
provided by students and their integration.
Teaching and assessment approaches to
achieve deep learning.

Levels of
learning/understanding

Six levels: Remember,
Understand, Apply, Analyze,
Evaluate, and Create

Five levels: Prestructural; Unistructural;
Multistructural; Relational; and
Extended Abstract

Type of knowledge
Four types: Factual,
Conceptual, Procedural, and
Metacognitive

Two types: Declarative and Functioning

Teaching/learning
activities

Examples are included but
there is not a dedicated section
for this subject.

The activities are classified according to
the type of knowledge that students have
to reach.

Assessment

General explanation of
summative and formative
assessment with some
examples.

Explains and provides examples of
summative and formative assessment
related to the types of knowledge.

www.manaraa.com

12

1.2.2 Constructive Alignment and Experiential Learning

The taxonomies presented above are based on the constructivist philosophy which has its

origin in the studies of Jean Piaget, John Dewey, Lev Vigotsky, and Jerome Bruner (Pelech

and Pieper, 2010). According to constructivism, the knowledge is not discovered; it is created

by relating it with previous knowledge through personal experiences and social interaction.

Moreover, the gain of knowledge is stimulated when learners are confronted with practical

experiences and contextual problems (Anderson et al., 2001; Beard and Wilson, 2006; Biggs

and Tang, 2007; Brooks and Brooks, 2001; Izquierdo, 2008; Lindsey and Berger, 2009;

Pelech and Pieper, 2010).

The term constructive alignment refers to the tight relationship among the Intended Leaning

Outcomes (ILO), the Teaching and Learning Activities (TLA), and the Assessment Tasks

(AT). This means that learners can construct their own knowledge when the Teaching and

Learning Activities (TLA) promote the Intended Learning Outcomes (ILO), and when the

Assessment Tasks (AT) are used to verify the ILOs level of achievement (Biggs and Tang,

2007). Constructive alignment aims at helping the achievement of improved students

learning outcomes through teaching environments that support the engagement of students

with teaching activities and assessment tasks (Larkin and Richardson, 2012).

The application of constructive alignment seeks to achieve meaningful learning (deep,

functioning) instead of surface learning (rote, declarative) in students. Meaningful learning is

achieved when students can use relevant knowledge to solve new problems and to understand

new concepts. Deep learning also entails the analysis of new ideas by taking into account

existing knowledge (concepts, principles) (Anderson et al., 2001; Biggs and Tang, 2007;

McAuliffe and Eriksen, 2011). Contrary to deep learning, surface learning implies having

relevant knowledge without being able to use it to solve problems. According to McAuliffe

and Eriksen, deep learning is "specially needed in disciplines in which the knowledge base

and the methods for effective practice are less defined" (McAuliffe and Eriksen, 2011, p. 15).

www.manaraa.com

13

This is the case of software measurement, which is still immature compared to other

engineering disciplines.

The way in which learning is achieved relies on the instructional (teaching and learning

activities) and assessment approaches used with students. In the case of surface learning,

traditional ways of instructions (lectures, tutorials) and assessment (written exams) are

suitable for achieving it. However, meaningful learning demands more involvement of

students, which can be performed through games, simulations, role playing, real problems

solving, field work, etc. Similarly, assessment tasks have an impact on learners. Reaching

deep learning demands to put students' knowledge to work with real-life professional

problems. This can be performed through projects (individual or in group), oral

presentations, poster designs and presentations, reflective journals, development of case

studies, and capstone projects (projects performed at the end of a university program).

As it can be noticed from the precedent paragraph, deep learning is associated with activities

and tasks that may engage students in being active agents of their own learning. Learning by

experience has its origins in the work of John Dewey, and has become popular with the

experiential learning cycle of David Kolb (Beard and Wilson, 2006; McAuliffe and Eriksen,

2011). The cycle has four phases:

1) Concrete experience: Refers to an experience that stimulates the senses and alerts the

learners. Concrete experiences are useful to introduce new concepts.

2) Reflective Observation: This is produced when the learner is able to observe and reflect

on concrete experiences from many perspectives: that is, making sense from different

angles. Teachers can promote reflection through class discussion or asking students to

write a reflection paper.

3) Abstract conceptualization: This involves the creation or modification of guidelines,

strategies, ideas or abstract concepts for taking action across situations. In this regard,

teachers can explain concepts (abstract notions) and then provide examples, or provide

examples first, and explain the concepts after.

www.manaraa.com

14

4) Active experimentation: This implies the application or testing of concepts that have been

learned through experience and reflection in further real-world experiences.

Summarizing, experiential learning takes place: when learners make connections between

what they are learning and personal experiences; when learners connect what they are

learning with what they know (previously learned); and when learners can apply what they

have been taught to real-world problems (Beard and Wilson, 2006; Lindsey and Berger,

2009; McAuliffe and Eriksen, 2011). Active learning may demand from teachers the search

of activities appealing to students followed by formative assessment, which together may

have a long-term impact on students (learners).

Formative assessment is characterized by the provision of feedback to students during their

learning process. That is, telling students how well they are doing and what needs to be

improved in a task (project, exercise, presentation, etc) or in the process followed to perform

that task, or clarifying concepts and procedures that were not completely understood

(Anderson et al., 2001; Biggs, 1995; Biggs and Tang, 2007; Hattie and Timperley, 2007).

Formative assessment is very important to reach higher order levels of learning in students;

however, the educational system is mostly oriented to perform summative assessment

(grading students). Summative assessment often grades students at the end of a course (or

fixed period) in an artificial condition - e.g. time pressure, written exam out of context (Biggs

and Tang, 2007). This type of assessment is necessary for accreditation and policies making

purposes; notwithstanding, it is advisable to avoid performing the assessment at the end of a

course. If it is performed at the end, it will not be possible to provide feedback and help

students to learn (Suskie, 2009).

1.2.3 Constructivist teaching

According to Pritchard and Woollard, constructivist teaching is "associated with learning that

involves critical thinking, motivation, learner independence, feedback, dialogue, language,

www.manaraa.com

15

explanation, questioning, learning through teaching, contextualization, experiments and real-

world problem solving". To do constructivist teaching, these authors proposed the following

seven principles (Pritchard and Woollard, 2010, p. 48):

1) "tell the learner why they are learning;

2) provide opportunities to make the learner feel in control;

3) provide opportunities for active engagement;

4) plan to use the learner's previous experiences;

5) plan to structure the learning experience based upon understanding of the curriculum;

6) be sensitive to emotional aspects of learning experiences;

7) contextualize the activities with real-life examples".

In addition, the authors suggest four forms of dialogue to be used in a constructivist

classroom:

1) Assertions (e.g. definition of terms; introductions; teacher planning including learning

outcomes and phases within the learning session, defining the scope; warm-up activities)

2) Contradictions (e.g. brainstorming; teacher contributions; debate)

3) Continuations (e.g. teacher-planned phases, action planning, roles within the groups)

4) Confirmation (e.g. group presentations; assignment writing; tests; teacher assessment

questioning; summary; plenary).

Although, the literature offers advice for teaching in a constructive way, teaching may be

seen as an art. According to Lupton, teaching should be personalized to respond to the

students' needs. That is, the consideration of time constraints, learning environments, and

teaching styles should guide teachers in the use of their creativity, originality, and innovation

to teach in their own way. Therefore, Lupton suggests adding a fourth level to the existing

three levels of teaching proposed by Biggs (2003): 1) who the student is; 2) what the teacher

does; 3) what the student does; and 4) who the teacher is (Lupton, 2012).

Examples of the application of constructive alignment and associated concepts are presented

in chapter 4.

www.manaraa.com

16

1.2.4 Skills and their development

The use of experiential activities in constructivist teaching not only contributes to the

acquisition of knowledge, but also to the development of skills (communication, teamwork,

leadership, time management, critical thinking, etc.) and awareness (Beard and Wilson,

2006). Similar to learning knowledge, the learning of skills also requires experience and

practice (Romiszowski, 2009). The process of acquiring skills is gradual, starting from

narrow skills such as listening or questioning, and moving forward to broad skills such as

teamwork, communication, critical thinking, etc. (Beard and Wilson, 2006).

Skill is defined by Romiszowski 2009 as “the capacity to perform a given type of task or

activity with a given degree of effectiveness, efficiency, speed or other measure of quantity

or quality”. Romiszowski presents four types of skills: 1) cognitive or intellectual; 2) motor

or psychomotor; 3) personal or reactive; and 4) interactive or interpersonal (Romiszowski,

2009).

• Cognitive or intellectual skills: require the use and management of the mind. Examples:

problem solving, critical thinking, and decision making.

• Motor or psychomotor skills: refer to physical action, perceptual acuity and other skills

that use and manage the body. Examples: playing a musical instrument, dance or athletic

performance.

• Personal or reactive skills: handle of attitudes, feelings, and habits. Examples: self-

expression, self-discipline and self-control.

• Interactive or interpersonal skills: entail social habits and the management of

relationships and interactions with others. Examples: Active listening, persuasion,

collaboration.

Some skills are more complex than others. That is, productive skills (e.g. thinking about a

strategy to solve a problem) are more complex than reproductive skills (e.g. performing a

repetitive or recurring activity). The development of complex - cognitive - intellectual skills

requires knowledge. Therefore, to help students developing these skills, educators must

www.manaraa.com

17

assure a deep understanding (deep-meaningful learning) of essential topics (Garrison and

Archer, 2000; Romiszowski, 2009). According to Garrison et Archer (2000), there are four

essential activities - that used in combination - promote meaningful learning: listening,

talking, reading and writing.

Listening and reading (individually or in group) are needed for information acquisition, while

talking and writing (individually or in group) are necessary for knowledge construction. In

the case of listening (to a lecture, to a classmate doing an explanation, etc), it contributes to

create meaning; whereas reading contributes to reflect about the subject in study. On the

other hand, talking allows students to recognize contradictions, inconsistencies, and limited

perspectives; writing leads students to think reflectively when organizing their ideas to

produce a report, journal or other document. It is important to mention that listening has a

low impact in learning when it is used alone. Listening should be complemented with the

other three activities (reading, talking and writing) to increase the learning opportunities in

students (Garrison and Archer, 2000).

This thesis work aims to facilitate the acquisition of software measurement knowledge in

students and to reach the expected levels of learning by using constructivist teaching.

However, the development of skills is indirectly targeted through the use of the four essential

activities mentioned above (listening, reading, talking and writing) along the proposed

educational framework designed and presented in chapter 4.

1.3 Initiatives in software measurement education

There are few works reported in the literature that tackle the education of software

measurement in higher education, that is, publications that explicitly mention the interest of

achieving or improving learning in students. Those works are presented next.

www.manaraa.com

18

1.3.1 The METKIT project

The first work oriented to improve the education in software measurement was METKIT, an

initiative financed with European funds through the SPRIT project. METKIT started in 1989

with the aim of designing educational material for both industrial and academic environments

(Bush and Russell, 1992). At the time the METKIT work was conducted (1989-1992), there

was a severe lack of material, especially text books that teachers and industrial educators

could use in their software engineering courses. To identify the needs for software

measurement teaching material, the METKIT team collected information from academia and

industry across Europe, the United States, and Japan (6 countries in total). The research team

conducted a postal survey among people from academia and industry and interviewed people

from universities and educators from industry. Among the respondents, 69% of them agreed

that there was not enough teaching material for software measurement at that time. Most of

the interviewees expressed their desire to have available material related to software

measurement principles, a set of examples and case studies instead of having a detailed

prescription of explicit measures. Respondents also emphasized the need for students to

recognize the importance of software measurement and to acquire skills for monitoring

projects, predicting development effort, controlling the quality of a product, and documenting

experience.

The teaching material, designed to help students and professionals in collecting simple but

defined measures, was based on the Goal Question Metric (GQM) approach and the

elaboration theory of Reigeluth and Stein (1983). The material consisted of two packages:

academic and industrial. Both packages were developed in a modular form for the following

reasons:

• To give students (from university and industry) an overview of the measurement domain

before developing insights into a specific area;

• To avoid duplication of work while preparing material for industry and academia;

• To easily produce courses to individual organizations with specific training needs; and

• To incorporate modules in the existing courses taught at universities.

www.manaraa.com

19

The academic package had 4 modules and the industrial 18. The academic package (object of

interest for this thesis) covers the following topics:

• Module 0: Brief introduction to software engineering measurement.

• Module 1: Expanded the overview of Module 0 including the principles of measurement,

definition of goals, data collection and analysis, the use of measurement in the industry,

standards and certification.

• Module 2: It contained specialized topics such as: measurement theory, experimental

design, a case study, and a tool sample (incorporated examples to run in software

measurement commercial tools).

• Module 3: It gave guidelines to measure internal and external attributes.

These academic modules were targeted to undergraduate and postgraduate students

specializing in software engineering or software engineering measurement.

In 1993, it was reported that 45 universities and 28 companies had bought the METKIT

teaching packages (Bush and Ashley, 1993); however, usage has not be confirmed, and there

has been little reference to this initiative since then.

1.3.2 The X-MED game

Another work related to measurement in an academic context is the exploratory study

conducted by (Gresse von Wangenheim, Thiry and Kochanski, 2009). This work was

performed to test the effectiveness of the game X-MED as an educational tool for

complementing the lectures of a Software Measurement Module. X-MED was designed to

meet the educational needs of graduate students in computer science programs and was tested

among an experimental group of 15 students of two Brazilian universities. The duration of

the module was 8 hours 45 minutes, including: a pre-test, lectures, in-class exercises, the

game X-MED, and a post-test. Only the students who were part of the experimental group

played the game. The tool is based on GQM and includes some elements of Practical

Software and Systems Measurement (PSM). X-MED presented a hypothetical scenario in

www.manaraa.com

20

which students have to develop a measurement program. During the game, students are

automatically guided by following the steps of GQM. Each step is associated to a task that

students need to perform by choosing an appropriate answer. Even when the students

selected a wrong answer, the game provided feedback and continued leading them to the

right way. On average the game lasts two hours. The expected levels of learning for this

module according to the Bloom's taxonomy were:

• Remembering: Can the students recall information?

• Understanding: Can students explain ideas?

• Applying: Can students use a procedure?

It is important to remark that the exploratory study described above is the only one initiative

that was identified in software measurement education in which the learning objectives were

explicitly indicated and considered according to the Bloom’s taxonomy. It is also relevant

that the learning effectiveness was investigated. The authors had difficulties in demonstrating

a positive learning contribution to master level students by using the X-MED game. It seems

that the duration of the module was a major constraint to reach the expected levels of

learning and to include and cover topics in depth.

1.3.3 The Play' n' Learn approach

Play' n' Learn is a general approach proposed by Buglione 2009. According to the author, the

application of customized versions of well known games, like Monopoly, can serve to fix and

verify the knowledge acquired by learners. Buglione customized a number of games to be

used in software management and measurement training, with a focus on Functional Size

Measurement (FSM). According to the author, the main reason for choosing FSM is that it

represents one of the main inputs for determining the time and effort required for project

planning (Buglione, 2009).

www.manaraa.com

21

The approach (Play' n' Learn) includes guidelines with examples to create or customize

games. The examples presented by Buglione consider a number of customized games with

different levels of complexity: novice, intermediate and expert. The complexity is related to

levels of knowledge that trainees have to achieve. Hence, the novice level deals with learning

rules, awareness and basic knowledge; the intermediate or junior level has to do with notions;

and the expert or senior level with managing concepts. Examples of games are:

• Level 1: Project-o-poly, this game highlights the need for certification and proper use of

measures;

• Level 2: Trivial Pursuit (IFPUG FPA), game used to verify the knowledge of IFPUG

FPA through questions and answers;

• Level 3: Taboo (IFPUG FPA), in this game learners have to guess a word (terminology of

the Counting Practice Manual) based on five related words that appear in a card.

1.3.4 Visual learning techniques for software measurement

A recent work related to learning software measurement is the experiment conducted by

Cuadrado et al. 2011, in which a visual environment was used to evaluate the effectiveness of

visual over traditional methods in the learning of functional size measurement (Cuadrado-

Gallego, Borja Martin and Rodriguez Soria, 2011). The experiment was performed with 43

students in their last year of a computer science degree program. The students took an initial

exam and a final exam. They were divided into an experimental group and a control group.

The experimental group of 18 students attended four sessions of visual learning methods

lasting 1 hour and 30 minutes each. The control group attended four sessions lasting 2 hours

each, given by a professor who taught them the theory of the measurement method. During

the last session, the students in both groups performed a size measurement exercise. The

experimental group obtained an average of 20 correct answers, compared to 15 for the

control group in the final exam.

www.manaraa.com

22

A second work of Cuadrado et al. related to the education of software measurement presents

an analysis of the degree of dispersion in measuring the functional size of a real-world

software application with undergraduate students (Cuadrado-Gallego et al., 2012). To carry

out the experiment, the researchers trained and evaluated students before choosing the ones

who qualified as participants for such experiment. A total of 97 undergraduate students

registered in a Systems Planning and Management course received a 10 hours of theoretical

lectures spread in five sessions of two hours. Only 61 students met the criteria for

participating in the experiment, which were: having at least 90% of attendance in the

training sessions; and demonstrating proper knowledge in COSMIC-ISO 19761 sofware

measurement method by having a grade higher than 7/10 in a written exam -- 1 hour of

duration. The exam had 50 multiple choice questions with four possible answers each.

During the experiment, students used their knowledge to perform the measurement task in a

maximum of 15 hours.

All the related works summarized above - as reported in the literature - present gaps in terms

of: establishing the priorities with respect to the topics that should be emphasized in

university courses; and the missing connection between the topics taught and the learning

objectives. This doctoral thesis aims at filling this gap through the identification of priorities

(see chapter 3) and the achievement of the learning outcomes (see chapter 4).

www.manaraa.com

CHAPTER 2

RESEARCH OBJECTIVES AND METHODOLOGY

2.1 Research motivation

Between 2003 and 2008, I contributed to a research project, financed by Belgian universities,

which aimed to help small and medium Ecuadorian software-development companies to

improve their processes and to become aware of the new trends in the software engineering

field. Within this R&D project, an inventory of companies was built to determine their size,

the target market, the process they used to develop software, their beliefs and desire of

obtaining certifications (ISO, CMMI), and so on. In addition, two workshops were organized

with participants from industry and academia to develop strategies for reaching the project

research objectives.

This led to changes in the curriculum of the software engineering courses taught at ESPOL

University (Ecuador) at the undergraduate and graduate level, introducing subjects such as

SPI (Software process improvement) and measurement techniques. Moreover, over that

period, annual Software Engineering Conferences were held in Ecuador with the sponsorship

of the Belgian universities and the IEEE. In 2008, Dr. Pierre Bourque visited ESPOL -as one

of the invited speakers and talked about software measurement, including the COSMIC

method and the ISBSG repository.

Several months later, officials from the Ecuadorian government who had attended the

conference indicated to ESPOL’s faculty their concerns about the lack of software

development companies in Ecuador measuring the size of their products. The latter was

intended to be a government requisite in order to make a proper estimation of prices of

software applications. This governmental concern along with the desire of software

companies to obtain CMMi certifications were one important motivation for the teaching of

software measurement at the undergraduate level.

www.manaraa.com

24

2.2 Research goal

The long term goal of this research work is to facilitate the implementation of measurement

programs in software development organizations. We believe that the first step to reach this

goal is the enhancement of education in software measurement at the undergraduate level, the

undergraduates being the majority of the workforce in the software industry

2.3 Research objectives

To address the research goal, the following research objectives have been selected:

1) To determine the state of the art of software measurement in higher education.

2) To identify the priorities of software measurement in higher education at the

undergraduate level.

3) To develop a framework for education in software measurement at software engineering

undergraduate programs based on:

• the related bodies of knowledge;

• the results of the surveys and the Delphi study (see chapter 3);

• the Bloom's taxonomy regarding the levels of learning (revised version (Anderson et

al., 2001)); and

• the constructivist approach.

2.4 Originality of the proposed research

As in any engineering discipline, measurement should be playing an important role in the

software field. The connection between measurement and software process improvement has

been emphasized, not only in the existing or upcoming standards, models and bodies of

knowledge (Abran, Bourque and Dupuis, 2004; Bourque et al., 2008; IEEE ACM, 2004;

Integrated Software & Systems Engineering Curriculum (iSSEc) Project, 2009b; Trienekens

et al., 2007; Weber and Layman, 2002), but also in several studies conducted within the

industrial software sector (Gopal et al., 2002; Iversen and Ngwenyama, 2006; Rainer and

Hall, 2003; Staples and Niazi, 2008). Moreover, the curriculum guidelines for undergraduate

www.manaraa.com

25

and graduate software engineering programs include knowledge areas in which measurement

topics are explicitly considered (IEEE ACM, 2004; Integrated Software & Systems

Engineering Curriculum (iSSEc) Project, 2009b).

Despite the extensive research work in software measurement and process improvement,

little has been done in academic settings to tackle the lack of guidelines to address the

teaching of software measurement in undergraduate programs. The reported efforts in

addressing the education of software measurement are mostly focused in using specific

methods, techniques or learning objects for gathering data from experimental studies

conducted with students. Indeed, the shortcoming in providing proper education of software

measurement in universities has been evidenced in a number of publications (Gresse von

Wangenheim, Thiry and Kochanski, 2009; Jones, 2008; Zuse, 1998). Therefore, there is a

need to consolidate the existing software measurement knowledge so that university students

can learn and reach the expected levels of learning.

The present doctoral research work contributes to fill this gap by researching, designing and

providing an educational framework to facilitate the teaching and learning process of

software measurement topics considered as priorities in higher education at the

undergraduate level.

By following the proposed framework, students (learners) are expected to become familiar

with key software measurement topics as well as to be aware and able to support software

measurement programs as part of software process improvement initiatives within

organizations hiring them.

2.5 Target audiences of this research

The audiences targeted in this research are the following:

1) University teachers or instructors:

• who want to include software measurement topics in their courses.

www.manaraa.com

26

• who want to improve their current courses in which software measurement topics are

included.

• who are interested in knowing how to apply active learning approaches in their

classrooms and promoting meaningful learning among students.

2) Researchers looking for educational proposals that can be applied in higher education.

3) Software engineering practitioners or university students who want to learn software

measurement by themselves and are looking for related theory and examples.

4) Software measurement practitioners, consultants or organizations looking for new

examples of software measurement or new ideas for training.

5) Bodies of knowledge searching new publications and research works in their field of

knowledge.

2.6 Overview of the research methodology

The methodology proposed to achieve the objectives of this doctoral thesis is divided into

four phases:

• Phase 1: Literature review and design of surveys related to software measurement

educational issues.

• Phase 2: Identification of priorities of software measurement for undergraduates.

• Phase 3: Design of an educational framework.

• Phase 4: Evaluation of the educational framework.

Figure 2.1 presents an overview of the research methodology, in which the inputs, phases,

outputs and outcomes are visible. The corresponding chapters (sections, sub-sections) and

appendices containing the details about the methodology appear in parenthesis.

The phase 1 includes the identification of software measurement topics taught at universities

as well as the level of learning reached by students. The findings on this phase are based on

www.manaraa.com

27

the reported studies published since the year 2000 (section 3.1) and on a new web survey

designed and conducted among university teachers worldwide (section 3.2.1).

The phase 2 includes three activities to identify priorities in the education of software

measurement: a web survey with practitioners (section 3.2.2), interviews with experienced

software measurement teachers (section 3.4); and a Delphi study to reach consensus about

the priorities (section 3.3).

The phase 3 includes: the definition of the educational framework; the design of its structure;

and the filling-up of the framework. This latter consists of examples to show the applicability

of the framework (chapter 4 and Appendix XV). The structure of the framework presents the

connection of the required components to reach the expected levels of learning associated to

the topics considered in the framework.

The phase 4 presents the evaluation of the framework performed by university students and

teachers. The former were used to identify flaws in the understandability of examples and

tasks assigned to students (sections 5.3.1 and 5.4.1); whereas the latter were important to

determine the level of adoption of the proposed framework among teachers. The evaluation

with teachers was done through a model adapted from (Gopal et al., 2002) -sections 5.2,

5.3.2 and 5.4.2).

www.manaraa.com

28

Figure 2.1 Overview of the research methodology

www.manaraa.com

CHAPTER 3

STATE OF THE ART OF SOFTWARE MEASUREMENT IN HIGHER
EDUCATION AND IDENTIFICATION OF PRIORITIES

This chapter presents the results obtained in the phases 1 and 2 of this research work: the

literature survey and the research step taken for the identification of priorities of software

measurement for undergraduates. The findings of these results will be used for the

development of the educational framework explained in chapter 4.

3.1 Literature survey

3.1.1 The objective of the literature survey

The objective of this literature survey was to gain insights into how software measurement is

taught at universities. To accomplish this objective, publications related to software

measurement in academia were reviewed.

3.1.2 The selection of papers

The detailed information related to this literature survey (related work, methodology and

results) is available in our first article “Software Measurement in Software Engineering

Education: A Comparative Analysis” presented in Stuttgart, Germany in November 2010

(see Appendix XVIII) (Villavicencio and Abran, 2010).

This section briefly describes how we searched publications related to software measurement

in an academic environment. This survey looked for studies conducted in universities where

students – undergraduate or graduate - were performing measurement activities as part of

their assignments in software measurement related courses (software engineering, software

measurement, software quality, software project management, etc).

www.manaraa.com

30

The databases used for this purpose were Compendex and Inspec. The searching criteria

employed for executing the queries included a number of keywords, as follows:

Keywords:

• Software engineering;

• Measurement OR metrics;

• Education OR teaching;

• Experiment OR empirical;

• CMM OR PSP OR TSP OR GQM OR GQMI OR functional size OR COCOMO OR

function points OR COSMIC OR McCabe OR estimation OR quality control.

• Undergraduate OR Graduate OR students

• Year of publication: from 2000 to 2010

In mid-2010, when this study was conducted, 18 articles met the search criteria. A complete

description of the methodology used for this study can be found in section 3 of our article

(see Appendix XVIII).

3.1.3 Results

The results published in (Villavicencio and Abran, 2010) can be summarized as follows:

• The majority of articles reporting experiments where students performed measurement

activities (67%) were found in conference proceedings. From them, (28%) were

published in the Software Engineering Education and Training Conferences – SEET.

• These experimental studies used mostly undergraduate (67%) rather than graduate

students (33%).

• The experiments were mostly performed with students enrolled in computer sciences

programs: Undergraduate level (67%) and graduate level (100%).

• For the experiments, students mostly worked with toy projects (undergraduate 75%,

graduate 67%).

www.manaraa.com

31

• The students participating in the studies were mostly enrolled in their last year of studies

(undergraduate 67%, graduate 100%); and were taking a mandatory course related to

software measurement (67% both undergraduates and graduates).

• In those experiments, students generally worked in teams (undergraduate 42%, graduate

67%).

Only few articles mentioned the learning objectives related to software measurement

(undergraduate 17%, graduate 33%).

• The topics most commonly covered according to the publications reviewed were:

• Measurement techniques, mainly Goal Question Metric (GQM) and Personal

Software Process (PSP) (undergraduate 50%, graduate 67%).

• Measures by life cycle phase, especially effort, size and defects (undergraduate 42%,

graduate 33%).

• The teaching approach most commonly used was lectures (50% both - undergraduates

and graduates).

• Among the approaches used for assessing students’ learning, written exams were

explicitly referred (undergraduate 25%, graduate 17%).

• The level of learning expected to be accomplished by students was rarely specified (no

more than 25% in both cases: undergraduates and graduates).

More details about the results are available in section 4 of Appendix XVIII. After the

publication of our article, in 2011 and 2012, two new articles were identified (Cuadrado-

Gallego et al., 2012; Cuadrado-Gallego, Borja Martin and Rodriguez Soria, 2011).

3.2 Web survey

From January to May of 2011, two web surveys were designed and conducted - one for

teachers and the other for practitioners.

The survey administered to teachers was designed to build the state of the art of software

measurement education from primary sources - the university teachers. On the other hand,

www.manaraa.com

32

the survey administered to practitioners was intended to know issues related to software

process improvement (SPI) initiatives and measurement programs in software organizations,

and to get preliminary insights of the software measurement topics that should be the focus

of university programs, according to practitioners.

The list of potential respondents was obtained from several sources, including: software

measurement associations (i.e. GUFPI-ISMA); software measurement conferences

organizers (i.e. UKSMA, IWSM-MENSURA); software engineering research group mailing

lists (i.e. Competisoft), and digital libraries (i.e. engineering village and IEEE Xplore). A

total of 159 respondents worldwide (107 teachers and 52 practitioners) answered the

questionnaires.

Detailed information related to both surveys is included in Appendix XXII, which contains

the article "Software Measurement in Higher Education" submitted to the International

Journal of Software Engineering and Knowledge Engineering.

3.2.1 Web survey for teachers

3.2.1.1 Objectives of this survey

This survey aimed to identify:

• what software measurement topics are being taught in universities programs and their

expected levels of learning.

• what practices are currently used at universities for teaching software measurement.

3.2.1.2 Methodology

The methodology for both surveys is explained in sections 3.1 to 3.5 of appendix XXII. The

methodology mainly considers the design of the instrument (questionnaire) and the selection

of the sample.

www.manaraa.com

33

To design the instrument, we:

• created a list of software measurement topics based on the ACM and IEEE software

engineering curriculum guidelines for undergraduate programs (IEEE ACM, 2004) and

the Software Measurement Body of Knowledge (Abran, April and Buglione, 2010;

Bourque et al., 2008).

• used the revised version of Bloom’s taxonomy (Anderson et al., 2001) to propose a range

of learning outcomes that are in relation with the six levels of learning of the taxonomy

(remember, understand, apply, analyze, evaluate, and create).

• used concepts related to teaching and assessment approaches to write the questions.

To select the sample, we looked for university teachers who were teaching software

engineering, software measurement, or any course in which software measurement topics are

taught. The name and email of teachers were obtained from the sources mentioned in the

section 3.2. From these, a total of 107 teachers - representing universities from 27 countries-

answered the survey.

3.2.1.3 Results

The results from this sample are described in the Appendix XXII - section 4.1.

A brief summary of those results is presented next:

• The most referred courses in which software measurement topics are covered are:

software engineering (48.6%), software quality (11.1%), software measurement (9.7%),

and software project management (9%).

• The majority of the measurement-related courses (52.8%) is mandatory and taught to

undergraduates.

• The measurement-related courses are generally offered during the third or fourth year of

study for undergraduates (65.3%) and during the first year for graduates (77.6%).

www.manaraa.com

34

• The software measurement topics most commonly covered at universities are: 1) basic

concepts; 2) measures related to quality; 3) techniques and tools; and 4) the measurement

process.

• In the Software Engineering courses, which represent the majority of courses where

software measurement is taught, the main focus related to measurement relies on basic

concepts and techniques and tools regardless the level in which they are taught

(undergraduate or graduate).

• The first three levels of learning of the Bloom's taxonomy (remember, understand, apply)

are expected to be achieved by all students, regardless of the educational level of the

program (undergraduate or graduate).

• Graduate students are expected to achieve higher levels of learning (analyze, evaluate,

and create) than undergraduates.

• Around 60% of teachers combine theory and exercises in class.

• Students work in groups to measure size, effort, and defects. They commonly measure

toy software projects (64.5%).

• The instructional approaches most commonly used for teaching software measurement

are: lectures (88.2%), case studies (64.6%) and collaborative activities (59.2%).

• The level of learning of students is commonly assessed through written exams (69.7%),

term projects (67.1%) and presentations in class of assignments/projects (63.2%).

3.2.2 Web survey for practitioners

3.2.2.1 The objective of this survey

With this survey, we wanted to determine:

• the level of importance perceived by organizations on software measurement.

• how organizations appreciate software measurement knowledge acquired by graduating

students when they become their employees.

www.manaraa.com

35

• what specific software measurement topics should be emphasized in software engineering

education from the practitioners point of view.

3.2.2.2 Methodology

The methodology applied to carry out this survey is similar to the one used for the web

survey with university teachers (see section 3.2.1.2). However, for designing the

questionnaire we took into consideration aspects related to software process improvement

(SPI) initiatives and measurement programs in organizations. To create the questionnaire,

some ideas were taken from articles related to surveys performed in the software industry

such as (Bush and Russell, 1992; Chudnovsky, López and Melitsko, 2001; Salazar et al.,

2004; Trienekens et al., 2007; Yazbek, 2010).

Regarding the sample, this was composed by practitioners working on SPI programs, as well

as software measurement specialists from private or public organizations. A total of 52

practitioners from 18 countries answered the questionnaire.

3.2.2.3 Results

Partial results of this survey were presented and published in the 25th IEEE Canadian

Conference on Electrical and Computer Engineering held in Montreal (see Appendix XXI).

In addition, an extended version of this publication is included in the article "Software

Measurement in Higher Education" submitted to the International Journal of Software

Engineering and Knowledge Engineering (Appendix XXII - section 4.2).

A brief summary of the results is presented next:

• The majority of organizations represented in the sample had a Software Process

Improvement (SPI) program (96%) at the time the survey was conducted.

www.manaraa.com

36

• Among the certified organizations, 85% had ISO 9001 certification and 45% had CMMI.

Certified organizations employ more people with Master’s and Phd. degrees than non

certified ones.

• From the set of organizations that had measurement programs, 89% of them used their

own definitions of software measures, 22% used the ISO 20926 IFPUG 4.1 method, and

11% used the ISO 19761 COSMIC functional size method.

• The software measurement tools used by organizations are spreadsheets (41% - for

registering their measures) and Microsoft Project for planning and tracking (26%).

According to the totality of this sample, there is an agreement in considering three software

measurement topics as essential to be taught in university courses: basic concepts; the

measurement process; and techniques and tools. For the rest of the topics, there were

differences in opinions between respondents depending on the type of organization they work

for (certified, not certified, with or without a measurement program). Respondents from

certified organizations considered that measurement standards should be emphasized in

university courses, while those from non certified organizations preferred software

engineering management measures. In addition, certified organizations and those that had

measurement programs gave greater importance to the topic measures for the requirements

phase than non certified organizations and those without measurement programs.

3.3 The Delphi study to identify priorities

The Delphi method is used to reach consensus among experts regarding an issue that needs to

be investigated or solved. For reaching consensus, several rounds are performed via a

structured communication process (Amos and Pearse, 2008; Bourque et al., 2002; Gatchell,

Linsenmeier and Harris, 2004; Howze and Dalrymple, 2004; Hung, Altschuld and Lee, 2008;

Okoli and Pawlowski, 2004).

Delphi studies are generally used in educational research projects and are helpful for

determining learning goals (Suskie, 2009).

www.manaraa.com

37

Our Delphi study started in summer 2011 (preparation phase) and ended in fall 2012

(verification phase). The methodology and the results of the pilot test of this study are

available in Appendix XIII, which corresponds to the article "Software Measurement in

Software Engineering Education: A Delphi Study to Develop a List of Teaching Topics and

Related Levels of Learning" presented in the 38th Euromicro Conference on Software

Engineering and Advanced Applications - SEAA 2012.

3.3.1 The objective of the Delphi study

The objective of this study was to identify the software measurement topics that should be

emphasized at the undergraduate level in software engineering programs, and the levels of

learning that students should reach according to Bloom’s taxonomy.

3.3.2 Methodology

As previously mentioned, the methodology is covered in Appendix XXIII (section III -

Research Methodology). Figure 3.1 summarizes the steps followed to perform this Delphi

study.

www.manaraa.com

38

Figure 3.1 General view of the Delphi study - adapted from (Okoli and Pawlowski, 2004)

The Delphi study had two panels of software measurement experts: university teachers and

practitioners. The profile of each type of participant is as follows:

Practitioners

• With five or more years of professional experience in software measurement by working

on SPI programs, and/or software measurement programs as a team member or specialist.

• Members of a software measurement committee or a software measurement association

(not mandatory, but preferable).

• With publications in software measurement related to professional and research

experience in the field.

• With post secondary education.

Literature
Review

Objective &
Research
question

Delphi
General
Design

Selection of
experts

Delphi
Design
Round1

Pilot
Round 1

Delphi
Round 1

Delphi
Design

Round 2

Delphi
Round 2

Submit to
Ethics

committee

Necessary
adjustments

Approval?

Results:
Documentation

& Analysis

Survey for verification

No

Yes

Delphi
Design

Round 3

Delphi
Round 3

Preparation

Execution

Verification
Interview with recognized experts

www.manaraa.com

39

University teachers

• With five or more years of teaching experience in specialized software measurement

courses, or related software engineering courses in which software measurement topics

are covered.

• With publications in software measurement related areas.

• Members of a software measurement committee or a software measurement association

(not mandatory, but preferable).

A list of potential participants who met the expert profiles was developed by searching

articles related to software measurement in digital libraries (e.g. IEEE Xplore, Engineering

Village) and by looking for experienced practitioners in LinkedIn specialized software

measurement groups.

Our Delphi study was performed in three rounds:

1) In the first round, the experts had to choose five software measurement topics that they

considered as essential to be taught at the undergraduate level; they also selected the

expected levels of learning per each of the topics; and the set of skills required for

undergraduate students to complement their education in software measurement.

In the second round, the order of importance of the software measurement topics, skills and

levels of learning was determined by the participants.

In the third round, participants had to manifest whether or not they agreed with the ranking of

the priorities defined in round 2 or provide new rankings.

Table 3.1 shows the number of participants who were invited per panel and the number of

participants per round.

www.manaraa.com

40

Table 3.1 Number of participants of the Delphi study

Rounds

Teachers'
panel

Practitioners'
panel

Both
panels

Participants invited 31 34 65

Round #1 17 18 35

Round #2 14 15 29

Round #3 14 16 30

After each round, a summary of the results was sent to the participants along with the

invitation to participate in the next round.

After the three rounds, the results were verified by two means: 1) conducting a survey among

people attending software engineering international conferences (practitioners and teachers);

and 2) interviewing recognized experts in the software measurement field.

In the case of the participants of the survey for the verification step after the three Dephi

rounds, they did not have to meet selection criteria to fill out the questionnaire: the

participation in this verification process was completely voluntary. A total of 50 people

answered the verification questionnaire (26 teachers and 24 practitioners).

Regarding the recognized experts, the profile defined was:

• A person with more than 10 years of experience in the field by leading software

measurement communities, associations, or enterprises specialized in software

measurement.

• With relevant publications in software measurement such as books and/or articles in

renowned journals.

By searching software measurement books in Amazon.com, eleven recognized experts were

identified. Four of them were interviewed in a software measurement conference held in Italy

in October 2012.

www.manaraa.com

41

3.3.3 Results

3.3.3.1 Results from rounds 1 to 3

This section is divided in three parts:

• Software measurement topics,

• Levels of learning, and

• Complementary skills that need to be considered in software measurement education.

Software measurement topics

During the first round, the participants of each panel were asked to select among a list of

software measurement topics from Phase 1 the five most important to be taught to

undergraduate students. Each topic included in the list had examples in order to avoid

misunderstandings or confusion among participants.

With the data of each panel, we used the following criteria to select the five most important

topics:

• More than 50% of the experts in both panels (university teachers and practitioners) chose

the topic.

• More than 50% of one expert‘s panel chose the topic (university teachers or

practitioners).

• The topic did not reach the 50% acceptance level but it was still rated among the 5 most

important topics in both panels.

www.manaraa.com

42

Both panels agreed on four topics. However, each panel selected a different fifth topic, given

a total of six topics that met any of the above criteria, as follows:

1) Basic concepts in software measurement (both panels)

2) The measurement process (both panels)

3) Techniques and tools for software measurement (both panels)

4) Software management measures (both panels)

5) Measures for the requirements phase (practitioner's panels)

6) Measures for the design phase (teachers' panel)

It is worth mentioning that the topics were arranged in a random order in the questionnaires

used for each round.

In rounds 2 and 3, the participants were asked to rank the topics. The criteria that we used to

determine the ranking provided by the participants were:

• The mathematical mode (the ranking most commonly selected by participants for a

specific topic)

• The number of votes per topic.

The degree of consensus (DC) of participants was defined as follows:

• Less than 10% votes (0-9.99%): Very weak degree of consensus (VW)

• Less than 30% votes (10-29.99%): Weak degree of consensus (W)

• Less than 50% votes (30-49.99%): Moderate degree of consensus (M)

• Less than 70% votes (50-69.99%): Strong degree of consensus (S)

• Less than 90% votes (70-89.99%): Very strong degree of consensus (VS)

• Less than or equal to 100% votes (90-100%): Extremely strong degree of consensus (ES)

• With an undetermined mode: No consensus

www.manaraa.com

43

In round 2 of the teacher's panel, the order of the first four positions of the rankings was

identified. Notwithstanding, positions 5 and 6 were not clear. A third round was required to

confirm the four first positions and to identify positions 5 and 6.

In round 2 of the practitioners' panel, the positions 1 and 4 to 6 were identified but not the

positions 2 and 3. The round 3 was needed to identify those positions with low level of

agreement.

Table 3.2 presents the final rankings of the software measurement topics obtained in round 3.

More information about these results, including the explanations provided by participants, is

available in Appendix XXIX.

Table 3.2 Ranking of software measurement topics for undergraduates

TOPICS
TEACHERS PRACTITIONERS

Ranking % votes DC Ranking % votes DC
Basic concepts in software
measurement

1 79% VS 1 80% VS

The measurement process 2 79% VS 2 81% VS

Techniques &Tools 3 71% VS 3 69% S
Software management
measures

4 71% VS 4 81% VS

Measures for the
requirements Phase

5 64% S 5 81% VS

Measures for the design
phase

6 57% S 6 75% VS

Levels of learning

In the previous section on measurement topics, we explained how the participants chose the

five most important topics. In this section on levels of learning, we explain how the levels of

learning for each of those topics were determined.

www.manaraa.com

44

In the first round, the participants had to select from a list of levels of learning, the ones that -

according to them - should be reached by undergraduate students in the five most important

software measurement topics.

A web application was developed in such a way that once the participants had selected the

five most important topics, their corresponding levels of learning appeared in the screen to be

selected. Every topic had between 4 to 6 levels of learning related with the levels of the

Bloom's taxonomy. This means that every expected level of learning per topic had a

corresponding level of the Bloom's taxonomy. The participants did not know the relationship

of the levels of learning shown in the screen with the Bloom's taxonomy. In the analysis, we

did use the relationship to match the levels of learning selected by participants with the

Bloom's taxonomy.

Once the participants had selected the levels of learning per topic (the five most important),

the following criteria were used for identifying the most preferred:

• More than 50% of the experts in both panels chose the level of learning.

• More than 50% of one expert‘s panel chose the level of learning.

• The level of learning did not reach more than 50% of acceptance, however it was

considered as the most important in both panels.

For the second round, we asked again the participants to choose the levels of learning per

topic. In this round we got a clear consensus about the preference of the participants (strong,

very strong, extremely strong), so we did not include this question in round 3.

The criteria used to categorize the preferences of the participants regarding the levels of

learning were:

• Less than 10% votes (0-9.99%): Very weak preference (VW)

• Less than 30% votes (10-29.99%): Weak preference (W)

• Less than 50% votes (30-49.99%): Moderate preference (M)

• Less than 70% votes (50-69.99%): Strong preference (S)

www.manaraa.com

45

• Less than 90% votes (70-89.99%): Very strong preference (VS)

• Less than or equal to 100% votes (90-100%): Extremely strong preference (ES)

Table 3.3 shows the levels of learning per topic preferred by participants. As it can be

noticed, the first levels are the most preferred. Extended information can be found in

Appendix XXIX.

Complementary skills that need to be considered in software measurement education

To complete the information related to the education of software measurement, a section

about skills was included in the Delphi study. In the first round, participants were asked to

select -among a list - four skills needed to complement the education of software

measurement at the undergraduate level.

The criteria used to select the skills that passed to round 2 were the following:

• More than 50% of the experts in both panels chose the skill.

• More than 50% of one expert‘s panel chose the skill.

The skills selected in round 1 were:

• Oral communication

• Written communication

• Team work

• Critical Thinking

www.manaraa.com

46

Table 3.3 Preference of Levels of Learning per topic and panel

%
Pref.

Degree
Pref.

%
Pref.

Degree
Pref.

BASIC CONCEPTS IN SOFTWARE MEASUREMENT

L1. Remembering software measurement terminology and concepts 100 ES 80 VS
L2. Giving examples of basic concepts, measurement methods and procedures 100 ES 80 VS
L3. Explaining them 79 VS 60 S
L4. Using terminology and concepts in a given exercise/project 57 S 60 S
THE MEASUREMENT PROCESS

L1. Remembering the measurement process 86 VS 73 VS
L2. Explaining the measurement process 100 ES 73 VS
L3. Using the measurement process in a given project/situation 57 S 53 S
L4. Designing/modifying a measurement process for a specific situation 21 W 13 W
TECHNIQUES AND TOOLS FOR SOFTWARE MEASUREMENT

L1. Remembering the existing software measurement techniques and tools 86 VS 80 VS
L2. Giving an example of them 93 ES 73 VS
L3. Explaining them 79 VS 60 S
L4. Following a technique in an exercise or in a given project 79 VS 53 S
L5. Using an appropriate technique/tool (according to what is needed in a
given project/situation)

36 M 33 M

SOFTWARE MANAGEMENT MEASURES

L1. Remembering concepts related to effort estimation, measures for project
planning and control

93 ES 80 VS

L2. Explaining how to estimate the effort of a project 86 VS 67 S
L3. Measuring time and effort in a given project 57 S 67 S
L4. Using effort estimation models according to the situation 36 M 27 W
L5. Analyzing measurement results for project control 29 W 40 M
MEASURES FOR THE REQUIREMENTS PHASE

L1. Remembering the most common functional size measurement methods 93 ES 80 VS
L2. Interpreting how the most common functional size measurement methods
work

79 VS 67 S

L3. Obtaining the functional size of the software in an exercise or project by
following a measurement method

64 S 73 VS

L4. Using an appropriate functional size measurement method (according to
what is needed in a given project/situation)

43 M 40 M

MEASURES FOR THE DESIGN PHASE

L1. Remembering the measures for the design phase 86 VS 80 VS
L2. Interpreting the meaning of the measures and how to obtain them 71 VS 67 S
L3. Obtaining the measures in an exercise or in a given small project 57 S 47 M
L4. Using the measures when it is appropriate in a real/simulated situation 36 M 20 W

TEACHERS PRACTITIONERS

Levels of Learning per software measurement topic

www.manaraa.com

47

In rounds 2 and 3, the participants were asked to rank the skills. The criteria that we used to

determine the ranking were the same used for the topics.

In round 2 of the teacher's panel, only the positions 1 and 2 of the ranking were identified.

So, we needed the third round to identify the remaining positions.

In round 2 of the practitioners' panel, the positions 3 and 4 were identified but not the first

two of the ranking. The third round was also needed.

The table 3.4 presents the final rankings of the skills obtained in round 3. Appendix XXIX

contains complementary information.

Table 3.4 Ranking of skills needed to complement education in software measurement

SKILLS
TEACHERS PRACTITIONERS

Ranking % votes DC Ranking % votes DC

Critical Thinking 1 57% S 1 75% VS

Oral communication 2 100% ES 4 94% ES
Written
communication

3 86% VS 3 53% S

Teamwork 4 86% VS 2 69% S

3.3.3.2 Results from the verification phase

Survey among people attending software engineering international conferences

The main objective of the survey was to verify the results of the Delphi study. To accomplish

this objective this survey was conducted among teachers and practitioners.

The survey was promoted among the attendees of the following conferences:

www.manaraa.com

48

• 38th Euromicro Conference on Software Engineering and Advanced Applications.

September 5-8, 2012. Cesme, Izmir, Turkey.

• The Joint Conference of the 22nd International Workshop on Software Measurement

(IWSM) and the 7th International Conference on Software Process and Product

Measurement (Mensura), October 17-19 2012, Assisi, Italy.

• The IX Ibero American Conference on Software Engineering and Knowledge

Engineering, November 28-30, 2012, Lima, Peru.

Fifty people from 18 countries showed interested in our research work and voluntarily

answered the questionnaire: 26 teachers and 24 practitioners.

For the survey, similar questionnaires were used with both types of participants. The

questionnaires for teachers and practitioners had a general information section and three

sections to verify the results of the Delphi study (software measurement topics, levels of

learning; and skills to complement the education in software measurement) - See Appendix

XIII. The questionnaire for teachers included an additional section to gather information

about educational aspects related to constructivism and active learning. This additional

section and the information collected during the interviews with teachers provided relevant

inputs to develop the framework presented in chapter 4.

For the three sections used for the verification of the Delphi study, the respondents had to

indicate their level of agreement with the results obtained by using a five points Likert scale

from strongly agree to strongly disagree. The results presented here and the following pages

correspond to the counts and percentages obtained for the alternative strongly agree.

As it can be noticed from table 3.5, the topics techniques and tools and measures for the

requirement phase obtained less percentages of strongly agree among practitioners.

However, in the case of techniques and tools, the majority of practitioners chose somewhat

agree (45.8%); giving an agreement of 75% (strongly agree + somewhat agree) in the

ranking of this topic. In the case of measures for the requirement phase, 33.3% of

www.manaraa.com

49

practitioners chose somewhat agree (i.e. strongly agree + somewhat agree = 75%). The

reasons given by practitioners to justify their selection are listed below:

• In real projects, the requirements phase has the strongest impact in project success. IT

students should be more convinced to study this topic than techniques and tools.

• You first need to know what the specific "measures" are prior to selecting tools.

Measures tell you "what" while tools show you "how".

• Measures for design (#6) are specific; they are suitable for master degree. There are

several methods for the measure #5, explaining all of the function point counting methods

would last too long. It would be suitable in master degree not for undergraduates.

• The position #5 (measures for the requirements phase) should be #1 because all the

problems start with poor requirements.

• The position #5 should be #3 because it is better to know these concepts before

introducing the #4 (software management measures).

• The measures in the requirements phase are more relevant than management measures.

• The ranking reflects a theoretical approach in software measurement. In my experience, it

is better to give an objective first with "why we need measures" by following a pragmatic

approach. So I would rather start with examples of measures and why we need them and

how they can be used and then the final stage I would go for the theory and fundamentals

of measurement. My ranking would be 4, 5, 6, 3, 1, 2.

Table 3.6 shows the results of the preference of levels of learning chosen by teachers and

practitioners. For simplification purposes, this table only includes the levels of learning that

reached 50% or higher percentages in the category strongly agree.

www.manaraa.com

50

Table 3.5 Verification of the ranking of the software measurement topics

Ranking Topics

Strongly agree
Teachers
(N1=26)

Practitioners
(N2=24)

% # %
1 Basic concepts 23 88.5 23 95.8
2 Measurement process 18 69.2 17 70.8
3 Techniques and tools 17 65.4 7 29.2
4 Software management measures 13 50.0 12 50.0
5 Measurement for the requirements phase 15 57.7 10 41.7
6 Measurement for the design phase 13 50.0 12 50.0

Disagreements are observed in some levels of learning of three topics: Techniques and tools;

measures for the requirements phase; and measures for the design phase. Similar

discrepancies were detected during the Delphi study (see table 3.3); especially with regard to

the topic Measures for the design phase, which is generally preferred by teachers but not by

practitioners. This seems to suggest that teachers prefer to teach measures related to

programming tasks with which the students are more familiarized.

Regarding the skills needed to complement the education of software measurement for

undergraduate students, the verification results show that - in general - the participants agree

with the rankings (see table 3.7). However, the written communications skill did not reach a

strongly agreement among practitioners. The justifications provided were:

• Almost every large problem in a real project comes from people who have

communication and team work problems.

• I agree more or less, but I would put critical thinking less.

• Regarding writing skills, not all aspects are documented.

• Written and oral communications should have higher priority because I do not think

critical thinking and team work can be easily improved. So, I would work on the "low-

hanging fruit" first.

www.manaraa.com

51

Table 3.6 Verification of the selection of levels of learning per topic

Levels of Learning per software measurement topic

Strongly agree

Teachers Practitioners

% # %

BASIC CONCEPTS IN SOFTWARE MEASUREMENT

Can remember software measurement terminology and concepts 19 73.1 17 77.3

Can give examples of basic concepts, measurement methods and
procedures

22 84.6 16 72.7

Can explain the above 20 76.9 12 54.5

Can use terminology and concepts in a given exercise or project 20 76.9 15 68.2

THE MEASUREMENT PROCESS

Can remember the measurement process 14 53.8 13 59.1

Can use the measurement process in a given project/situation 20 76.9 12 54.5
TECHNIQUES AND TOOLS (T&T) FOR SOFTWARE
MEASUREMENT

Can remember the existing software measurement techniques and
tools

17 65.4 13 59.1

Can give an example of software measurement techniques and tools 19 73.1 12 54.5

Can follow a technique in an exercise or project 20 76.9 10 45.5

SOFTWARE MANAGEMENT MEASURES
Can remember concepts related to effort estimation, and measures
for project planning and control

15 57.7 14 63.6

Can explain how to estimate the effort of a project 16 61.5 14 63.6

Can measure time and effort in a project 14 53.8 11 50.0

MEASURES FOR THE REQUIREMENTS PHASE
Can remember the most common functional size measurement
methods

14 53.8 12 54.5

Can obtain the functional size of the software in an exercise or
project by following a measurement method

16 61.5 9 40.9

MEASURES FOR THE DESIGN PHASE

Can remember the measures for the design phase 16 61.5 7 31.8
Can understand the meaning of the measures and how to obtain
them

16 61.5 8 36.4

Can obtain the measures in an exercise or in a small project 16 61.5 8 36.4

www.manaraa.com

52

Table 3.7 Verification of the ranking of the complementary skills

Skills
Strongly agree

Teachers Practitioners
Ranking # % Ranking # %

Critical Thinking 1 25 96.2 1 16 66.7

Oral Communication 2 13 50.0 4 12 50.0

Written Communication 3 16 61.5 3 11 45.8

Teamwork 4 16 61.5 2 14 58.3

As mentioned, the questionnaire for teachers included an extra section named Constructivism

and Active Learning. The following tables contain the results of this section, which had three

questions. The first question intended to discover preferences in methods for teaching

software measurement. The results for this question appear in table 3.8, from which four

preferences have been identified: class discussion, case studies, problem solving and games.

Table 3.8 Methods preferred for teaching software measurement

Methods preferred for
teaching software

measurement

Teachers =26

%

Class discussion 20 76.9
Role playing 8 30.8
Case studies 19 73.1
Games, simulations 14 53.8
Problem solving 19 73.1
Reflective journaling 5 19.2
Outdoor experience 2 7.7

The second question of this section aimed at identifying the resources that teachers consider

as the most valuable to facilitate the implementation of active learning in their courses that

include software measurement topics. Table 3.9 shows that three resources are considered

very valuable for teachers: examples of software measurement; guidelines for applying active

learning; and suggested activities to promote active learning in their courses.

www.manaraa.com

53

Table 3.9 Resources for teaching software measurement

Valuable resources for teaching software
measurement

Teachers = 26
%

Learning objectives 12 46.2%
Suggested content 11 42.3%

Guidelines for applying active learning 16 61.5%

Suggested activities to promote active learning 15 57.7%
Set of examples to be distributed to students 18 69.2%

Suggested assessment/evaluation criteria 11 42.3%

Finally, the third question asked teachers about the perceived impediments or barriers for

adopting an active learning approach in their courses that include software measurement

topics. Fifty percent of teachers consider that there are no impediments. The other fifty

percent believes that the limited time they have to cover the course content, along with their

own time constraints for preparing suitable activities as well as the lack of support and

resources from universities are impediments (see table 3.10).

Interviews with recognized experts

Four software-measurement book authors were interviewed in October 2012. During the

interview - 40 minutes in average, they were asked about their opinions with regard to the

results obtained in the Delphi study. They had the freedom to make comments and give

reasons that supported their agreement or disagreement with the Delphi's results.

To meet the ethics policies at ETS, an information and consent form was signed by the

interviewees to assure them the confidentiality of the data collected (written notes and audio

recordings).

www.manaraa.com

54

Table 3.10 Impediments for adopting an active learning approach for teaching software
measurement

Impediments for adopting an active learning approach
Teachers = 26

%
No impediments 13 50.0%
Limited time available for covering the course content 13 50.0%
Time constraints for preparing activities 12 46.2%
Lack of guidelines and resources for teaching using active
learning

7 26.9%

Lack of guidelines and resources for assessing students’
performance

3 11.5%

The training required to be able to apply active learning 3 11.5%
Students’ aversion to the active learning approach (prefer a
passive role)

0 0.0%

Active learning may not be suitable for teaching software
measurement

0 0.0%

Lack of support and resources from university (labs, software,
university-industry agreements, inflexibility for adopting new
ways of teaching)

12 46.2%

Satisfied with the way I am teaching 3 11.5%

 A semi structure type interview was used, which is characterized by (Bhamani Kajornboon,

2005; Leedy and Ormrod, 2010):

• having an interview guide (list of questions to be covered);

• flexibility: changing the order of or adding questions depending on the course of the

interview;

• giving explanations and asking for clarification if the answer is not clear;

• using words that are considered best according to the situation;

• using a conversational style but keeping the focus on the guide.

The interview guide is available in Appendix XIII - interview section.

The results of the interview show that, in general, recognized experts agree with the results.

However, some disagreements were observed which were explained through the

interviewees' comments that are presented next.

www.manaraa.com

55

Interviews with recognized experts: Ranking of software measurement topics

The software measurement topics kept the ranking order equal to the one obtained in the

Delphi study (Basic Concepts 100% - i.e. the four experts agreed, Measurement process 75%

- 3 experts agreed, Techniques and tools 100%, Software management measures 50%,

measures for the requirements phase 75%, measures for the design phase 75%). One expert

mentioned that software management measures should be taught after the specific measures

(requirements and design measures). He commented that the current ranking of topics is

logically ordered for trainees who work in organizations that already have historical data for

performing estimations. He said that this is not the case of undergraduate students because

they are in the process of learning software measurement, so they should learn first the

measures for the requirements phase. Another expert ranked the topic software management

measures as second since he considers that students need to know first why we need specific

measures before performing estimations. Finally, another expert said that he agreed with the

topics selected as priorities except for the measures for the design phase because he thinks it

should not be a priority. According to him, the first five topics in the ranking are mandatory

for university students.

Two experts suggested that the importance of software measurement should be strongly

emphasized. One of them also recommended linking the importance of measurement with

having clear objectives when measuring the software and the consequences of not doing that

(measurement). In other words, students should be aware of potential lost of not estimating

well for the lack of measurement. He suggested academia to look for ways of motivating

students to measure.

Interviews with recognized experts: Ranking of skills

Among the four interviewees, two of the skills - presented for being ranked - reached

consensus: Critical thinking (#1 - 100%) and written communication (#3 - 75%). The other

www.manaraa.com

56

two skills did not reach a clear consensus. The explanations for making the ranking of the

skills are presented next.

One expert said that there were 2 ways of ranking the skills. One is from an academic

perspective and the other is in practical terms. According to him, from an academic view (for

university students), the ranking should be: critical thinking, communication (oral and

written) and team work. The practical ranking (for practitioners) may consider other skills to

rank: leadership, problems resolution, ethical aspects, etc. Another expert mentioned that he

would split critical thinking into 2 skills: critical thinking per se and problem solving. These

two skills should be the firsts in the ranking, followed by oral communication, written

communication and team work. Another opinion from an expert was to rank the skills taking

into account that software measurement demands to work carefully. Therefore, he proposed

the ranking as follows: critical thinking, writing skills, team work and oral skills. The last

expert said that all those 4 skills selected by participants of the Delphi study are important.

He suggested using the term interpersonal skills rather than team work. According to him,

interpersonal skills are needed for convincing people about the value of measurement for

organizations. Notwithstanding, he believes that the development of skills is difficult for

young undergraduates.

Interviews with recognized experts: Levels of learning per topic

The opinions of the experts regarding the level of learning are somehow similar to the results

obtained in the Delphi study and the surveys conducted at the verification phase. This means

that the experts mostly chose the levels of learning that correspond to the first levels of the

Bloom's taxonomy (remember, understand and apply). However, the following differences

were observed:

In the case of the topic measures for the design phase, all experts agreed that students should

only reach the two first levels of learning (remember and understand).

www.manaraa.com

57

One expert considered that undergrads should not reach the apply level for the topics

measurement process (use a measurement process in a project) and measurement techniques

(follow a technique in an exercise or project). Another expert did not agree that students

obtain the functional size of the software (apply). According to these experts (both with

teaching experience), teachers may face time constraints while trying to deal with higher

levels of learning (from apply to create). In addition, one of the experts said that the

measurement process and the techniques and tools are context dependent. Hence, reaching

understanding of these topics may be enough.

3.4 Interview with teachers

The objective of the interview was to obtain insights into the problems that teachers face in

the teaching and learning process of software measurement.

Between October and November 2012, seven teachers were interviewed: four interviews took

place in Assisi, Italy during the Joint Conference of the 22nd International Workshop on

Software Measurement (IWSM-Mensura 2012) and the 7th International Conference on

Software Measurement; and three were performed via Skype using only the audio facility.

All of the interviewees had more than nine years of experience in teaching software

measurement at university courses, and research experience as demonstrated through their

publications in the field.

A semi-structured type interview was used. Participants were asked to sign an information

and consent form to meet the policies of the ETS Ethics Committee (see the interview guide

in Appendix XIV).

By talking to teachers, a number of problems related to the teaching of software

measurement were identified, as follows:

www.manaraa.com

58

• Time constraints: 5 out of 7 interviewees said that the number of hours assigned to teach

software measurement into their courses is not enough to cover the program in depth.

Teachers in charge of software engineering or project management courses for

undergraduates mentioned that they hardly have 6 to 8 hours for covering software

measurement concepts. Teachers, also mentioned that in the case of courses such as

software quality, software project management, software metrics, systems management

and planning, which have between 42 to 60 hours, covering in depth a whole range of

topics (functional size measurement, effort estimation, estimation models, GQM,

standards, product measures, PMBOK, etc.) is difficult. Four teachers said that they

assign academic exercises/projects to students because there is no time for working with

real projects.

• Lack of resources at universities: three interviewees mentioned the limitations they

have in terms of: classrooms (not suitable workshops and group work activities); labs

(not enough to have practical classes with students); many students per class (50 to 70);

budget to increase or improve the relationship with industry partners, budget for research,

etc.

• Overloaded students: Two teachers mentioned that some students at universities are or

seem to be overloaded. According to teachers, these students give the minimum effort

(just to pass the course), show a lack of motivation for learning new things, have

aversion to do something else that demands more knowledge or work; and are reluctant to

interact in class because of their lack of knowledge.

• Students without pre-requisites: One teacher expressed his worries of having students

who do not have the pre-requisites necessary to learn software measurement

(requirements elicitation, UML diagrams, and basic statistics). This means that, teachers

have to spend extra time to explain some concepts needed to learn software measurement.

• Social issues: One teacher mentioned that the differences among students coming from a

variety of countries with dissimilar cultures, languages and backgrounds are barriers that

make the interrelation among teacher-learners, learners-learners difficult, and lead the

students to keep a passive role in class.

www.manaraa.com

59

When teachers were asked about how they determine the level of learning that students reach

in software measurement (e.g remembering terminology, obtaining the functional size of the

software in an exercise, using a technique in a project, etc) and if they experience problems

in doing so, teachers gave the following answers:

• I do not determine the level of learning (2 teachers). According to their explanations,

determining the level of learning of each student takes time. Moreover, one of them

explained that- for him- it is also difficult to interpret what students have really learned

by reading answers in the exams.

• Rubrics help me to identify the level of learning (3 teachers). One teacher said that the

rubric used to grade the projects was in his head since he has been teaching the course for

a long period. The other two teachers said that their rubrics were developed to identify

the levels of learning reached by students. One teacher said that he gives the rubric to

students in advance - before grading the assignment.

• The exam questions are designed to test the level of learning reached by students (3

teachers). Teachers mentioned that they get an idea of what students learned based on the

responses provided in the exam. One teacher said that he uses multiple choice or

True/False questions to warm up students, but he uses open questions to know the level

of understanding of students. Other teacher said that he only uses open questions because

when the students are nervous they fail multiple choice questions; therefore, open

questions allow student to freely express their ideas and understanding.

• Projects help to determine what students learned (4 teachers). One teacher explained

that in his case, the project is optional. Hence, for him it is easier to see how much

students learned through the project rather than from the written exam. Other teachers

mentioned that according to the completeness, quality and consistency of the project, they

get an idea of the knowledge acquired by students.

• Anything is used to determine the level of learning (1 teacher). In this particular case,

the teacher mentioned that in his university there are policies regarding the level of

learning reached by students. This means that students have to demonstrate throughout

individual work (written exam, oral presentations, and assignments) and a group project

what they have learned. Everything counts for determining if the students reached the

www.manaraa.com

60

passing levels (minimum level of learning expected in the course, excluding

memorization).

During the interview, teachers were asked to indicate among a list of resources, the ones

considered as the most valuable to teach software measurement with an active learning

approach. The answers were: examples to be distributed to students (7), suggested activities

to promote active learning (5), suggested assessment criteria (4), guidelines for applying

active learning (3), ideas of learning objectives associated with the software measurement

topics (3).

Finally, regarding the topics that teachers consider as essential to be taught for

undergraduates, their suggestions can be summarized as follows:

• Basic concepts of software measurement: units, scales and basic statistics.

• Measurement process: the very basis of the measurement process because undergrads

lack of experience to understand the management aspects and decision making process.

• Techniques and tools: techniques rather than tools because tools are difficult to obtain at

universities while techniques are of easy access (GQM, PSP, root-cause analysis, etc).

• Software management measures: estimation of duration and effort; and the discipline in

performing such measures for project management purposes.

• Functional size measurement: identification of basic functional components.

3.5 Consolidation of results

The results of the studies presented in the previous sections have been consolidated in Figure

3.2, which is a layer representation of the software measurement topics that should be

covered in universities. The innermost layer is the most important or essential when teaching

software measurement; the second layer is the second most important and so on. The bold

letters correspond to the topics that are considered as priorities in software measurement

education for undergraduate programs (our target). The remaining topics - written in light

www.manaraa.com

61

gray and located in the upper layers - are the topics that may be covered superficially for

undergrads or taught in graduate programs.

Figure 3.2 Layers of the software measurement topics

In summary, five out of thirteen topics (see Figure 3.3) have been identified as priorities in

software measurement education for undergraduate students. For these topics, the levels of

learning suggested to reach are the ones that fall in the first three levels of the Bloom's

taxonomy (remember, understand and apply). In addition, educators should take into

consideration that four skills are needed to complement the education of software

measurement in students: critical thinking, oral and written communication, and team work.

All of these findings have been considered for developing the educational framework

presented in the next chapter.

Basic concepts of software
measurement

Why
measurement is

important?

The measurement process

Measures for
configuration management

www.manaraa.com

62

Figure 3.3 Software measurement topics considered as priorities in software engineering
education for undergraduates

www.manaraa.com

CHAPTER 4

A FRAMEWORK FOR THE EDUCATION OF SOFTWARE MEASUREMENT

This chapter presents the definition and structure of an educational framework developed to

facilitate the teaching and learning of software measurement. To illustrate the applicability of

the framework, five examples have been designed - one in this chapter and four in Appendix

XV. Each example refers to the priority topics and learning outcomes identified by experts in

the field through the Delphi study explained in chapter 3. The examples contain guidelines,

activities, tasks and rubrics that address the reaching of learning outcomes in students.

4.1 Framework design

This framework is designed as a set of guidelines to assist university teachers and instructors

in the teaching and learning process of software measurement for software engineering

undergraduate students or beginners in the field. This framework was developed on the basis

of:

• the related bodies of knowledge (Abran, April and Buglione, 2010);

• the results of the surveys and the Delphi study -chapter 3;

• the Bloom's taxonomy on levels of learning (revised version (Anderson et al., 2001)); and

• the constructivist approach (Brooks and Brooks, 2001; Fosnot, 2005).

4.2 Objective of the framework

The objective of the framework is to provide guidelines to university teachers and instructors

in order to promote the achievement of learning outcomes in students that are learning

software measurement for the first time. This way, the framework aims to be an instrument

for education in the software measurement field to enhance the teaching practices at the

university level. This improvement is in terms of new alternatives that teachers can follow to

improve their teaching.

www.manaraa.com

64

The framework can be used as a starting point to teach software measurement as part of a

software engineering course, or any other courses for beginners in which topics related to

software measurement are covered.

4.3 Structure of the framework

The framework has three main components: the inputs, the guidelines for teaching and

learning, and the expected outcomes (see Figure 4.1).

The set of inputs consists of:

• the software measurement topics shown in Figure 3.3;

• the course's objectives; and

• the available resources for teaching and learning (i.e. the Bloom's taxonomy; teaching,

learning and assessment approaches; bodies of knowledge; software measurement books,

etc).

The guidelines are divided into two parts: content and constructivist approach - see Figure

4.1. The former relates to each of the priority topics from Figure 3.3 along with the

identification of their cores (i.e. the most essential part to be covered in depth during the

course sessions). The cores for the topics were identified through interviews with

experienced teachers and highly recognized experts in the field, as explained in chapter 3.

The latter includes a set of activities and tasks designed to facilitate the teaching and learning

process of software measurement topics. In addition, adequate feedback to students is

suggested in order to ease the achievement of the expected learning outcomes.

www.manaraa.com

65

Figure 4.1 Structure of the educational framework

The expected outcomes refer to the knowledge and complementary skills that students are

expected to develop. In addition, an analysis is advised to determine the extent to which the

guidelines provided in the framework are contributing to reach the desired outcomes. The

analysis will investigate how well the students achieved the expected outcomes, and the

appraisal of unplanned course of actions and their endings. The analysis is very important to

improve the guidelines and promote better teaching. Notwithstanding, as expressed by

Hagström and Lindberg, "educational processes can never be completely prescribed" due to

the flux of teachers, students, knowledge, context, learning goals, etc. (Hagström and

Lindberg, 2012).

Software measurement Topic

Specific content to
be covered

Teaching and leaning
activities

Available
resources for
teaching and

learning

Intended learning outcomes

Core of the Topic

Assessment tasks

Students with
expected
knowledge and
skills

INPUTS GUIDELINES OUTCOMES

Feedback

Analysis for
continuous
improvement

CONTENT

CONSTRUCTIVIST APPROACH

Learned
lessons

Course’s
objectives

Software
measurement

priorities

Improvements
needed

Improvements
needed

www.manaraa.com

66

4.4 Objectives of the software measurement course for beginners

This course aims to familiarize the audience (undergraduate students or beginners) with basic

terminology, concepts and methods commonly used in the software measurement domain. At

the course completion, the students will be aware of the importance of measuring the

software (product and processes). Also, they will be able to apply basic software

measurement knowledge and a technique to measure (for example: functional size, time and

effort) a small-well-documented set of simple functional requirements. In addition, the

course promotes the development of interpersonal, communications and thinking skills by

exposing the students to a number of individual and group activities.

4.5 Pre-requisites

To use this framework, previous knowledge of software measurement is not necessary.

However, the students are expected to have basic knowledge of requirements specifications

and associated diagrams (e.g. working with use cases, class and sequence diagrams).

4.6 Applicability of the framework

This section exemplifies the application of the framework through the development of one of

the topics: Measures for the requirements phase. This topic was selected - among the five

priority topics - to be explained in this chapter because it is one of the most demanding in

terms of activities and tasks required to reach the learning outcomes. The other four topics

are presented in Appendix XV.

For each topic, the framework suggests the content to be covered, the teaching and learning

activities (TLAs), and the assessment tasks (ATs) that promote the acquisition of knowledge

and the achievement of the intended learning outcomes (ILOs). In addition, a roadmap per

topic was designed to illustrate their guidelines. The presentation of every topic, in this

chapter and Appendix XV, is divided into four parts: content, intended learning outcomes,

teaching and learning activities, and assessment tasks. When needed, each part contains

www.manaraa.com

67

examples and bibliographic references. Table 4.1 presents the general view of the whole

content of the framework.

Table 4.1 The educational framework at a glance

Topics
 Intended Learning

Outcomes (ILO)

Teaching and
Learning

Activities (TLA)

Time
(min)

Assessment Tasks
(AT)

1. Basic
concepts of
software
measurement

1.1 Explain why
measurement is important.
1.2 Give examples of
measurement units and
scale types.
1.3 Use measurement
units and scale types.

1.1 Interactive
lecture with two
activities

60

1.1 Questions in the
mid-term exam
1.2 Group project: be
familiar with
terminology used in
the ISBSG
questionnaire

2. The
measurement
process

2.1 Follow a given
measurement process in a
group project

2.1 Lecture
including an
example of a
measurement
process

30
5.3 Group project:
Follow a
measurement process

3. Software
measurement
techniques

3.1 Give examples of
techniques for software
measurement
3.2 Follow a given
technique in a group
project

3.1 Interactive
lecture with one
activity in pairs

90
3.1 Quiz
5.3 Group project:
Use a technique

4. Software
management
measures

4.1 Measure duration and
effort in a group project

4.1 Interactive
lecture with
examples

30

5.3 Group project:
Duration and effort,
reflection about the
results

5. Measure
for the
requirements
phase

5.1 Explain how the
functional size
measurement (FSM)
methods work.
5.2 Obtain the functional
size of a small-well-
documented set of simple
functional requirements

5.1 Reading prior
to class
5.2 Lecture
including 2
examples of FSM
5.3 Group activity
in class

90

5.1 Short essay in
class
5.2 Open questions
in the final exam
5.3 Group project

www.manaraa.com

68

4.6.1 Example: Measures for the requirements phase

Figure 4.2 shows the roadmap of the guidelines suggested for the topic measures for the

requirements phase. In the roadmap, the core of the topic and the content are defined.

Therefore, this section only explains where to find the suggested content and how to perform

the activities that promote the achievement of learning outcomes in students.

4.6.1.1 Suggested content

The content refers to the subjects that are suggested to be covered in each of the topics

included in this framework.

What is Functional size?

Functional size is defined in ISO 14143-1:2007(E) as: "a size of the software derived by

quantifying the Functional User Requirements (FUR)," where FUR is as "a sub-set of the

User Requirements describing what the software shall do, in terms of tasks and services"

(ISO/IEC, 2007).

www.manaraa.com

69

Figure 4.2 Example - Software measures for the requirements phase

Examples of FUR are:

• input of students data in a registration system;

• calculate the average mark of students in a course;

• list the students that are above the average.

More examples of FUR can be found in (ISO/IEC, 2007).

Topic 5: Measures for the requirement phase

Content :
What is Functional Size?
What FSM methods exist?
Characteristics of FSM methods
and how they work
The COSMIC method

TLA5-1: Assigned reading (prior to class)
TLA5-2: Lecture of FSM including 2 short
examples of COSMIC
TLA5-3: Collaborative work to solve a small
exercise in class

ILO5-1: Explain how FSM methods work
ILO5-2: Obtain the functional size of a small-well-
documented set of simple functional requirements.

Core: Functional size measurement (FSM)

AT5-1: Short-answer examination
AT5-2: Final exam: open question and exercise
AT5-3(*): Group project

Feedback
to students

www.manaraa.com

70

Functional size measurement methods (FSM)

"Functional Size Measurement (FSM) is a technique used to measure the size of software by

quantifying the Functional User Requirements of the software" (ISO/IEC, 2007).

"Functional Size Measurement Method (FSMM) is a specific implementation of FSM

defined by a set of rules, which conforms to the mandatory features of ISO/IEC 14143-

1:2007" (ISO/IEC, 2007)

In 1979, Allan Albrecht published the first functional size measurement method known as

Function Point Analysis. Afterwards, several extensions and variations of this method have

been produced. The current functional size measurement (FSM) methods adopted as ISO

standards are (Abran, 2010; Bundschuh and Dekkers, 2008; Fetcke, 1999):

• ISO 20926:2009 IFPUG 4.1 functional size measurement method

• ISO 19761:2011 COSMIC functional size measurement method

• ISO 24570:2005 NESMA functional size measurement method

• ISO 20968:2002 MKII function point analysis

• ISO 29881:2010 FiSMA 1.1 functional size measurement method

The first two ISO FSM methods are the most commonly used (Jones, 2008; Villavicencio

and Abran, 2011b).

Characteristics of the functional size measurement methods

The following mandatory characteristics of the FSM methods are listed in the standard ISO

14143-1:2007(E) (ISO/IEC, 2007).

A FSM method is:

• independent of the methods used to develop the software being measured;

• independent of the methods used to support the software being measured;

www.manaraa.com

71

• independent of the technological components of the software being measured.

This implies that functional size is not:

• derived from the effort required to develop the software being measured;

• derived from the effort required to support the software being measured;

How the functional size measurement methods (FSMM) work

All FSMM must fulfill the mandatory requirements of ISO/IEC 14143-1: this means that

regardless of the rules of the measurement methods, all these methods must focus on

measuring the functional user requirements.

Based on the standard ISO/IEC 14143-1, a FSMM "shall include the following activities in

order to derive Functional Size:

• Determine the Scope of the FSM (purpose for measuring the software);

• Identify the Functional User Requirements within the Scope of the FSM;

• Identify the Basic Functional Components (BFC) within the Functional User

Requirements (A BFC is an elementary unit of Functional User Requirements defined by

and used by an FSM Method for measurement purpose)

• Classify BFCs into BFC Types, if applicable;

• Assign the appropriate numeric value to each BFC;

• Calculate Functional Size".

This means that the Functional User Requirements (FUR) are characterized in terms of Basic

Functional Components (BFC).

For example, the BFC for the COSMIC Functional Size Measurement Method is the data

movement, categorized into four BFC types: Entry (E), Exit (X), Read (R), and Write (W). In

the case of the IFPUG functional size measurement method, the BFC types are: External

Input (EI), External Output (EO), External Inquiry (EQ), Internal Logical File (ILF), and

www.manaraa.com

72

External Interface File (EIF). These five elements are the BFCs for this method. Figure 4.3

shows a general representation of the COSMIC functional size measurement method ISO

19761.

Figure 4.3 General representation of the COSMIC Functional Size Measurement Method

Available material for teaching this subject can be found in the standard ISO 14143-

1:2007(ISO/IEC, 2007)

The COSMIC method

All the information related to this method is freely available throughout its website

http://www.cosmicon.com/. The site allows visitors not only having an overview of the

method, but downloading related articles, case studies, and the most recent version of the

measurement manual translated in 12 languages. In addition, the site contains a Frequently

Asked Question section useful for all type of audiences.

www.manaraa.com

73

A brief overview of the COSMIC method is as follows:

1) The Basic Functional Component (BFC) is the data movement.

2) The measurement unit is a COSMIC Function Point (CFP), which represents one data

movement of one data group.

3) A functional user of a software application can be: a human, another software

application, or a hardware device.

4) A boundary is a conceptual interface between the functional users and the software

application.

5) The functional users interact with the software application via data movements.

6) There are four types of data movements: Entry (E), eXit (X), Read (R), and Write (W).

a) An Entry occurs when a data group is moved from a functional user into the software.

b) An eXit occurs when a data group is moved from the software to a functional user.

c) A Read occurs when a data group is moved from a persistent storage into the

software.

d) A Write occurs when a data group is moved from the software into a persistent

storage.

A functional process is a set of data movements (at least 2).

A functional process is an elementary component of a set of Functional User Requirements.

A functional process is triggered by a data movement (an Entry) from a functional user.

A data movement moves a single data group, which is a distinct, non-empty, non-ordered

and non-redundant set of data attributes of the same object of interest.

A size unit of 1 CFP (COSMIC Function Point) is assigned to any data movement

The functional size of software is calculated in CFP by adding together the data movements.

To illustrate the above steps and concepts, Figure 4.4 shows a graphical representation of

how to obtain the functional size of a functional user requirement by using the COSMIC

method. The explanation of this Figure is next.

Scope of measurement: Measure the size of the functionality "Create a new customer"

www.manaraa.com

74

Functional user: Salesman

Pre-conditions: The salesman is already logged in the system and has selected the option

"Create Customer"

Flow of events:

1) The salesman enters the name and email of the new customer (John Smith,

js@hotmail.com) and presses OK.

2) The system verifies if the customer already exists in the database.

3) If the customer exists, an error message is displayed.

4) If the customer is new, the system asks the salesman to confirm the data that is going to

be saved by pressing OK. If needed, the salesman can correct the customer data.

5) A new customer is created into the database.

6) A confirmation or error message is displayed.

Boundary: Limit between the salesman and the system

Functional processes:

1) Verify if the customer exists in the database,

2) Create a new customer in the database.

Data group (DG): Customer (Name & e-mail)

Data attributes: Name, email

www.manaraa.com

75

Figure 4.4 Example of the COSMIC method

www.manaraa.com

76

Data movements (DM):

Functional process 1: Verify if the customer exists in the database

• The salesman enters the Customer data and presses OK (Triggering event - Entry)

• Retrieve the existing customers from the database to verify if John Smith already exists

as customer (Read).

• A confirmation message OR an error message -if the customer already exists- (eXit).

Functional process 2: Create a new customer in the database.

• The salesman verifies/corrects the customer data and presses OK (Triggering event -

Entry)

• The customer data is stored in the database (Write)

• Confirmation OR Error message (eXit)

Functional size:

Assign 1 CFP (Cosmic Function Point) per Data Movement, as shown in Table 4.2.

The examples of this chapter and other examples of functional size measurement are

available in http://software-measurement-education.espol.edu.ec/ (see also Appendices XV

and XXVII - a COSMIC case study).

All the examples of this chapter and

Suggested references for beginners are:

• The Warehouse Software Portfolio, A Case Study in Functional Size Measurement by T.

Fetcke 1999, chapter 7.

• Overview of the COSMIC Functional Size Measurement Method, available in:

http://www.cosmicon.com/methodV3.asp.

www.manaraa.com

77

• COSMIC Measurement Manual, available in: http://www.cosmicon.com/portal/

dl_info.asp?id=73, chapters 1 and 4.

• Case study - Course registration system, available in: http://www.cosmicon.com/

dl_manager2.asp?cat_id=68&parent_id=17&parent_name=04+-+Case+Studies&

sub_name=Business

Table 4.2 Example of counting Function Points with the COSMIC method

Functional
Process

Subprocess

DG

DM

CFP

Comment

Verify if the
customer exists in
the database

The salesman enters the
Customer data and presses
OK

Customer E 1

The system retrieves the
existing customers from
the database to verify if
John Smith already exists
as customer

Customer

R 1

A confirmation message
OR an error message (if
the customer already
exists)

Software
Messages

X 1

Create a new
customer in the
database

The salesman
verifies/corrects the
customer data and presses
OK

Customer

E 1

This movement is
considered as an
Entry because the
salesman can retype
the customer data

The customer data is
stored in the database

Customer
W 1

Confirmation or error
message

Customer
X 1

Total functional size = 6 CFP

4.6.1.2 Intended Learning Outcomes

For this example, two Intended Learning Outcomes (ILOs) are proposed. For each ILO, the

corresponding level of learning according to the Bloom's taxonomy is in parenthesis, as

follows:

www.manaraa.com

78

• ILO5-1: Explain how the functional size measurement methods work (Understand).

• ILO5-2: Obtain the functional size of a small-well-documented simple set of functional

requirements (Apply).

The number 5 in the ILO identifies the ordering of the topic according to the priority

determined in the Delphi study (1: Basic concepts of software measurement, 2: The

measurement process, 3: Software measurement techniques, 4: Software management

measures and 5: Measures for the requirements phase).

4.6.1.3 Teaching and Learning Activities

To reach the two ILOs (ILO5-1 and ILO5-2), TLAs (Teaching and Learning Activities) and

ATs (Assessment Tasks) were selected by having in mind the type of knowledge -

declarative or functioning - that students should reach. Biggs defines declarative knowledge

as something that a person knows about (i.e. knowing "what"), and functioning knowledge as

putting declarative knowledge to work by solving problems, designing, etc. (i.e. knowing

"how" and "when") (Biggs and Tang, 2007). Other authors refers this latter as procedural

knowledge (Anderson et al., 2001). ILO5-1 and ILO5-2 correspond to the functional -

procedural- knowledge type. Figure 4.5 illustrates some activities and tasks that may engage

students in their own learning (active learning) in order to achieve those ILOs.

www.manaraa.com

79

Figure 4.5 AlternativesTeaching and Learning Activities (TLAs) and Assessment Tasks
(ATs) to reach the Expected Learning Outcomes (ILOs)

Regarding the activities used in class for promoting active learning, Beard and Wilson

created the following four-stage sequence or activity wave based on the Cornell's flow of

learning (1989) (Beard and Wilson, 2006):

1) Stimulate the learner enthusiasm by using ice-breakers.

2) Start to focus attention on what should be learned with medium-sized activities and

narrow skills such as listening or questioning.

3) Direct the learner experience with larger activities and broader skills such as

communication, team work, problem solving and critical thinking.

4) Share learner enthusiasm using regular reviewing activities - feedback.

Table 4.3 shows the link between the stages of the flow learning with the activities and tasks

developed for the current example.

ILO5-1: Explain how FSM methods
work
ILO5-2:Obtain the functional size of a
software by following the COSMIC
method

Functioning
(Procedural)
knowledge
“How and

When”

Teaching and learning activities

Group work (games, simulation,
role playing, etc.)
 Problem-based learning
Case-based learning

Assessment Tasks

 Individual & group projects
Capstone or final projects
 Peer and self assessment
Written/oral exams (open
questions to assess meaningful
learning)

www.manaraa.com

80

Table 4.3 Application of the Cornell's flow learning

Stages of the Flow Learning Activities
Stimulate Use of ice breakers
Focus attention TLA5-1, TLA5-2, AT5-1
Learner experience TLA5-3, AT5-2, AT5-3
Feedback TLA5-3, AT5-3

In addition, for achieving the learning outcomes, a constructive alignment -represented as

two-way connections arrows in figure 4.2- is proposed. Constructive alignment means that

learners can construct knowledge when the Teaching and Learning Activities (TLAs)

promote the ILOs and when the Assessment Tasks (ATs) are used to verify the ILOs level of

achievement (Biggs and Tang, 2007).

TLA5-1: Reading prior class

Assigning a reading before a class session may reduce the high dependency on the lecture.

By reading, students have the chance to reflect which, in turn, may enable them to reach a

higher level of cognitive processing (Garrison and Archer, 2000). To take advantage of a

reading, it is necessary to make students aware of: why the reading is important, how it

relates to classroom activities and what information they should look for (Meyers & Jones,

1993 as referred in (Garrison and Archer, 2000)). This implies that teachers/instructors must

provide students with guiding questions upfront in order to facilitate the remembering and

understanding of the FSM concepts and application. Example of guiding questions for the

reading could be:

• What can be measured with functional size measurement methods?

• What cannot be measured with functional size measurement methods?

• What is a Functional User Requirement (FUR)?

• From what kind of software artifacts can the FURs be obtained to measure the functional

size of the software?

www.manaraa.com

81

An example of a short reading that includes answers for the guiding questions is The

Introduction of the COSMIC Method from the document: COSMIC Method v3.0.1

Measurement Manual pg. 10-14 (COSMIC, 2009).

TLA5-2: Lecture of FSM with examples

The suggested TLA5-2 activity is a traditional lecture - 60 minutes maximum. Lectures are

useful for introducing a subject; however, they must be limited to cover few topics and to

have, at the end, some time to review what has been learned. The lecturer has to keep in mind

that the attention of the students drops after 15 minutes (Biggs and Tang, 2007; Garrison and

Archer, 2000). That is why, changes of activities, use of icebreakers or pauses are required

(e.g. ask for questions, ask questions, give 2 minutes break, use a 3 minutes icebreaker, etc).

Using ice breakers -before starting or during the lecture - could be positive to students for

reducing inhibitions, encouraging cooperation, developing social skills, creating trust,

empathy and teamwork (Beard and Wilson, 2006; Knox, 2009). Information and examples of

ice breakers can be found in (Knox, 2009).

In order to reach the two ILOs and to effectively manage time constraints, the focus of the

lecture should be on: what is FSM, its characteristics and how to measure. Time constraints

are an issue for teachers who usually try to cover as much material as they can; nevertheless,

this should be avoided. It is better to ensure the learning of the essentials instead of

superficially covering the whole study program (Biggs and Tang, 2007). A good way of

assuring the students’ learning is through examples that connect students with the

surrounding world.

The slides designed by Abran 2011 which contain two short examples of measuring FSM

using COSMIC, could be used for this lecture (see Figures 4.6 and 4.7) (Abran, 2011):

www.manaraa.com

82

Figure 4.6 Example of the slides for a lecture of FSM - part 1

Figure 4.7 Example of the slides for a lecture of FSM - part 2

www.manaraa.com

83

Depending on the availability of time, teachers can make use of games or other educational

resources for achieving the learning goals (see examples in Appendix XV: Basic Concepts in

Software Measurement - section 3).

TLA5-3: Collaborative work

The third proposed activity (TLA5-3) is a collaborative work to solve a problem in class that

intends to facilitate the reaching of a higher level of learning (APPLY). Working

collaboratively has several advantages for students who usually need to "share concerns, seek

clarification over assignment requirements and to check their own insecure interpretations"

(Saberton 1985 as referred in (Biggs and Tang, 2007)). By solving a problem, students put in

practice what they have read (TLA5-1) and listened to (TLA5-2). Hence, the learning is

fostered through the students' engagement along the collaborative and guided activity for

solving a problem - an exercise in class.

To perform this activity, the following steps may be taken into consideration:

• Prepare a short exercise of functional size measurement (e.g. a purchase order, a hotel

booking, a student registration, etc.). Take into account that exercises/examples must be

in the context in which the students will use the problem solving skills (i.e. real-life

problems).

• Form small groups of students to perform the exercise - games may be used.

• Give students detailed instructions including a reasonable timeframe for performing the

activity.

• Select 2 groups to present the solution.

• Ask questions to the students and invite the rest of students to present different solutions

• Make suggestions and give feedback in a critical and reflective way to demonstrate the

correct answers to students. In this way students are shown how to think critically.

Therefore, this demonstration will help students in developing analytical skills.

• Encourage the learner to reflect on what he/she has learned (self reflection).

www.manaraa.com

84

• Distribute the solution of the exercise to students including explanations.

Regarding step 2 above, some suggestions of how to create groups are available in

(Examiner, 2012).

For this TLA5-3, a simplified version of an exercise of a "purchase order" designed by

Trudel 2012 (Trudel, 2012) is a good example that can be distributed to the students. This

example includes a description of the flow of events, a screen shot of the user interface and

the data model (see Figure 4.8). With this information, along with an explanation from the

teacher, the students have to obtain the functional size of the "purchase order" functionality

in 20 minutes by using the following measurement procedure:

5) Identify the functional users

6) Identify the triggering event

7) Identify the functional processes

8) Identify the data groups

9) Identify the data movements from the interface (Entry, eXit, Read and Write)

10) Obtain the total number of Cosmic Function Points (CFP)

The details and solution of this example are available in appendix XV.

All the elements included in the example (flow of events, screen shot, data model,

measurement procedure) are essential to show students how to solve problems by using the

COSMIC method. Structured methods are necessary to teach problem-solving skills (The

Centre for Teaching Excellence, 2013).

www.manaraa.com

85

Figure 4.8 Example of an exercise of FSM

4.6.1.4 Assessment Tasks

The way students learn mainly depends on how they think they will be assessed (Biggs and

Tang, 2007; Garrison and Archer, 2000). Therefore, the assessment has a very powerful

effect on a student's approach to learning (Garrison and Archer, 2000). In this respect, if

teachers want to assess deep learning instead of surface learning, they should communicate to

students their expectations in advance. In addition, teachers must design assignments suitable

for reaching deep learning and for focusing students on the most important concepts and

skills that they have to acquire (learning outcomes). To focus students, teachers should

provide good prompts -clear instructions and guidance on what students have to do (see

chapter 1).

www.manaraa.com

86

Since it is important to grade students (summative assessment - see chapter 1), a good way to

do it is through rubrics. A rubric is a scoring guide that describes the criteria that will be used

to evaluate student assignments (Biggs and Tang, 2007; Suskie, 2009). Some advantages of

using rubrics are quoted by Suskie 2009 (Suskie, 2009), as follows:

Rubrics..

• Help clarify vague, fuzzy ILOs

• Help students understand the teacher's expectations

• Can help students self-improve

• Make scoring easier and faster

• Make scoring more accurate, unbiased and consistent

• Improve feedback to students

• Reduce arguments with students

In addition, Suskie (Suskie, 2009) give tips for creating effective rubrics, such as:

• Look for models or examples

• List the things you are looking for:

i. What do you want students to learn from the assignment (ILOs)?

ii. What are the skills do you want students to demonstrate in the

assignment?

iii. What are the characteristics of good student work?

iv. What specific characteristics do you want to see in completed

assignments?

• Leave room for the unexpected (encourage originality/creativity)

• Create a rating scale - at least 3 levels:

i. Excellent, very good, adequate, needs attention

ii. Strongly agree, agree, disagree, strongly disagree

iii. Complete evidence, partial evidence, minimal evidence, no evidence

iv. A, B, C, D, F

www.manaraa.com

87

Rubrics are very useful to identify areas in which learners need to improve. This

identification can be performed by teachers or students. If a rubric is distributed to the

learners along with a task or if the learners are asked to apply a rubric to their or classmates

task, they (the learners) might identify by themselves opportunities for improvements. This

information (improvements needed) is useful for teachers to guide students in where to go

next (feed forward). That is, giving to students ideas, guidelines or strategies to move

forward in their understanding (Hattie and Timperley, 2007).

Examples of assessment tasks, rubrics and prompts for assessing ILO5-1 and ILO5-2 are

presented next.

AT5-1: Assessing reading comprehension

The task AT5-1 is designed to assess how well students remember and understand the

concepts of FSM (ILO5-1) after the assigned reading (TLA5-1). In this respect, a short essay

(1 to 3 minutes) with one of the following questions could be used:

Explain in your own words what functional size measurement is and how it works.

Summarize the main ideas of the reading.

With both questions, students are pushed to recall (remember) and summarize (understand)

what they read. However, the teacher has to reinforce and complement, in class, the main

points of the reading.

It is important to emphasize that students should know in advance that the understanding of

the reading will be assessed. Teachers should keep in mind that is preferable to assign only

key readings. Overloading students neither let them focus on key issues nor reflect on the

topics that they are expected to learn.

www.manaraa.com

88

AT5-2: Final Exam

The questions in the final exam have to assess the understanding of the concepts learned in

class. Consequently, the questions may be: an open question about concepts of measurement;

and/or one exercise for obtaining the functional size of a piece of software.

AT5-2: Final Exam - Open question

Since the ILO5-1 aims to assess understanding in students, open rather than closed questions

are preferable for determining the depth of the student's understanding (Biggs and Tang,

2007). Examples of open questions are:

Explain in your own words why software measurement is important and what its potential

benefits are for a software organization.

Explain why and how the COSMIC method is used in the software development process.

Guidelines on how to evaluate the levels of understanding of the students based on their

responses are explained in the SOLO taxonomy (Atherton, 2013; Biggs and Tang, 2007) -see

chapter 1. For the above mentioned question 2, an example of a rubric (see Table 4.4) based

on the SOLO taxonomy is proposed, along with the analysis of levels of understanding of

four hypothetical answers provided by students.

www.manaraa.com

89

Table 4.4 Rubric for an open question (adapted from (Biggs and Tang, 2007))

Excellent Good Adequate Marginal

Able to explain" why"
and "how" in a
coherent way,
including details and
giving his/her own
opinion, point of view,
using his/her own
words. Able to link the
use of COSMIC with
real-life professional
contexts.

Able to explain" why"
and "how" in a
coherent way,
including details and
giving his/her own
opinion, point of view,
using his/her own
words.

Able to explain"
why" and "how"
giving few details
and using words and
expressions
provided in class.

Able to briefly
write about "why"
and/or "how" the
method is used in
the software
development
process.

A+, A, A- B+, B, B- C+, C, C- D

By using the SOLO taxonomy, an analysis of possible answers provided by students to

question 2 is presented next:

Answer 1: COSMIC is a method that measures the functionality of the software. This is why

this method can be used to measure the size of a piece of software based on the functional

user requirements.

Analysis of answer 1:

Level of understanding: 2 - Unistructural

Explanation: The student’s answer is incomplete because it only refers to a brief definition of

the COSMIC method. The student excludes the explanation of the connection of COSMIC

with the software development process.

In the rubric: Marginal

Answer 2: COSMIC is a method that measures the functionality of software without

including technical or quality considerations. COSMIC was created to overcome the

weaknesses of the existing Function Points methods which were not adequate to measure the

functionality of real-time and embedded software. This method can be used during the

www.manaraa.com

90

software development process to measure the size of the software, as a whole or in parts.

The size is based on the functional user requirements. The size obtained is useful for

allocating resources to software projects.

Analysis of answer 2:

Level of understanding: 3 - Multistructural

This answer adds more details of COSMIC and how it is used in the software development

process; however, the student does not really explain how COSMIC is related with the

software development process.

In the rubric: Adequate

Answer 3: COSMIC is used for software developers because it is a method that measures the

functionality of software. The method only considers functional user requirements and not

technical or quality aspects of the software. COSMIC was created to overcome the

weaknesses of the existing Function Points methods which were designed to measure only

business software. Any kind of software can be measured with the COSMIC method:

business, real-time and embedded software.

In COSMIC, the functional user requirements (FUR) are represented by one or more

functional processes which are also represented by four data movements: entry, exit, read

and write. Each data movement is equivalent to one CFP (COSMIC Function Point), which

is the standard unit of measurement in COSMIC. COSMIC can be used to measure FURs in

any phase of the software development process. In addition, the method is also useful to

measure software at any level of decomposition, this means: as a whole or components or

sub components. Finally, it can be used in any layer of multi-layer software architecture.

Analysis of answer 3:

Level of understanding: 4 - Relational

The answer explains well the relationship between COSMIC and the software development

process.

www.manaraa.com

91

In the rubric: Good

Answer 4: COSMIC is used for software developers because it is a method that measures the

functionality of software. The method only considers functional user requirements and not

technical or quality aspects of the software. COSMIC was created to overcome the

weaknesses of the existing Function Points methods which were designed to measure only

business software. Any kind of software can be measured with the COSMIC method:

business, real-time and embedded software.

In COSMIC, the functional user requirements (FUR) are represented by one or more

functional processes which are also represented by four data movements: entry, exit, read

and write. Each data movement is equivalent to one CFP (COSMIC Function Point), which

is the standard unit of measurement in COSMIC. COSMIC can be used to measure FURs in

any phase of the software development process. In addition, the method is also useful to

measure software at any level of decomposition, this means: as a whole or components or

sub components; and in any layer of multi-layer software architecture.

The applicability of the method to a variety of types of software may be one of the reasons

why it has been adopted worldwide by software developers. This adoption might be

considered as beneficial for software developers since it is possible for them, for example, to

submit their data to a repository of software projects. One of the well known repositories is

ISBSG and based on the data in the repository, they can do benchmarking with respect to

other projects with similar characteristics. Finally, the whole software community can

benefit from the COSMIC method since the data from measured projects can be used by

software measurement researchers to develop estimation models.

Analysis of answer 4:

Level of understanding: 5 - Extended abstract

This answer meets the inquiries of the question and gives the notion that the student can

hypothesize (very high level of understanding) about the benefits of using COSMIC.

www.manaraa.com

92

In the rubric: Excellent

AT5-2: Final Exam - Exercise to measure the functional size of a piece of software

Solving an exercise during the final exam allows teachers to assess individual performance in

students when measuring a piece of software (understand and apply).

Regarding the measurement exercise, this may contain a small functionality. It does not have

to be identical or somehow similar to previous examples presented in class. The exercise

should be something simple while at the same time challenging, so that students are expected

to think out a solution for the problem. If identical or similar exercises are used, the students

will recall information instead of apply what they have learned in a new situation. The

exercise - and assignments in general - should not be too difficult with unrealistic

expectations. Table 4.5 presents an example of a rubric for grading the exercise.

Table 4.5 Rubric for functional size measurement

Complete Partial Minimal Null

Able to identify all
the triggering events,
functional processes,
data groups and
more than 80% of
the data movements.

Able to identify a
considerable number
of triggering events,
functional processes,
data groups (75%)
and can distinguish
the different types of
data movements.

Able to identify
some triggering
events, functional
process and data
groups (up to 50%).
Struggle identifying
data movements.

Able to identify few
triggering events,
functional process
and data groups (up
to 25%). Not able to
identify data
movements
correctly.

A+, A, A- B+, B, B- C+, C, C- D

AT5-3: Group project

One of the assignments that help students to reach higher levels of learning is individual or

group projects. The intent behind a project is to put knowledge to work in a real-life

www.manaraa.com

93

professional problem (Biggs and Tang, 2007), which cannot be performed in a two or three

hours final exam. In the case of group projects, they also help students to improve their

interpersonal and persuasive skills. In this sense, it is preferable for students to work in a

group with others rather than their close friends in order to develop those skills

(Romiszowski, 2009). Forming groups and promoting team building among them can be

performed by using proper games or techniques such as the ones included in (Network,

2006).

Regarding the project, teachers can ask students to measure the functional size of the entire

small-well-documented software application that they are required to develop in the course;

otherwise, students can measure only part of the software. Teachers should pay attention to

the time that students spend in the project. This is important because more time does not

necessarily produce more learning. Overloading students with a lot of work may stress and

discourage them. Students may become tired and produce a poor project, which implies a

poor learning. If a teacher considers that it would be too much work for the students, they

could ask, for example, to measure only 5 key functionalities of the software. This

measurement activity will encourage students to apply what they have learned and to

reinforce their previous knowledge. Notwithstanding, a good prompt is always necessary to

make the assignment -project- more challenging and interesting (Suskie, 2009). As an

example, see Table 4.6 with the prompt designed for this project.

Aspects such as distribution of tasks and roles have to be handled carefully in a group project

because students may divide themselves the tasks in such a way that they may learn little. It

is advisable to ask students to do peer-assessment and to write a short self-reflection about

the project.

The peer-assessment should be performed in secret and through a rubric designed for this

purpose (Biggs and Tang, 2007). Examples of peer-assessment rubrics can be found in

(Suskie, 2009) as well as on the Internet.

www.manaraa.com

94

Table 4.6 Prompt for a project that includes functional size measurement

Among the learning outcomes for this course, you have to: use measurement units and scale types, follow a
measurement technique, measure time and effort, and obtain the functional size of a small-well-documented set
of simple functional requirements.

To help you reach these learning outcomes, your major task in this course is to work in a group project in which
you will measure time, effort and functional size. For the measurement part of this project, you have to consider
the following three key areas: preparation, execution, and report.

Preparation:

• Download the data collection questionnaire for Development and Enhancement - COSMIC DCQ -
available in the website of ISBSG (The International Software Benchmarking Standards Group
Limited)
http://www.isbsg.org/ISBSGnew.nsf/WebPages/286528C58F55415BCA257474001C7B48?open.

• Become familiar with the seven sections of the questionnaire.
• Read the questions in each of the sections and identify which of those you could answer based on the

data you will collect.
• Pay attention on how the following terms in the questionnaire are used: units, scales, measurement

process, time, effort and functional size.

Execution:

• Analyze the functional requirements and identify: the functional users, the triggering events, the
functional processes, the data groups and the data movements.

• Obtain the functional size of the software
• Keep a record of the time spent in the project' activities
• Calculate the total duration (time) and effort (person/hours) spent in the project
• Fill the data collection questionnaire (from ISBSG) by answering the questions for which you have the

available information.

Report:

• Write an introduction of your project (no longer than one page).
• Include one or two sheets with a table and graphics showing the time and effort spent in the project.
• Include a sheet with the calculation of the functional size similar to the one used in class.
• Write a reflection based on the results obtained by the group, in terms of the functional size of the

software, the total time and effort spent in the project. The reflections should mention at least what the
group did well and wrong, and what can be improved. Feel free to include other aspects that you may
consider important for a good reflection.

• Include an individual reflection -one page of length per group member- where each student states what
his/her contribution in the project was and how this allowed his/her to reach the learning outcomes.

• Use proper and clear language to write the report.

• Look for references -if necessary-to support your conclusions.

The self-reflection is very important because it "helps students learn" (Suskie, 2009). The

reflection -one page of length- should state what the student’s contribution in the project was

and how this allowed his/her to reach the learning outcomes (see section Report in the table

4.6). This individual student reflection could be either graded or not. If it is graded, students

www.manaraa.com

95

may tend to sugarcoat what they actually learned; however, the grading will encourage

students to do the task and write carefully their reflections of learning (Biggs and Tang,

2007; Suskie, 2009). Whether or not the reflection report is graded, the writing activity aims

to develop in students the critical thinking skill (Garrison and Archer, 2000). Also the

reflection exercise may help them improve their metacognition skill (learn how to learn) and

the ability for making synthesis (Suskie, 2009). To enhance the effectiveness of critical

thinking, a presentation of the project could be requested by the teacher (if the timeframe of

the course allows doing so). The teacher, for example, could appoint a jury composed of two

teachers (colleagues), three classmates and one software practitioner to grade the students'

project presentation (Villavicencio and Abran, 2011a). Once again, writing and talking are

crucial for knowledge construction (Garrison and Archer, 2000) (Hagström and Lindberg,

2012).

Finally, based on the performance achieved by students, the teacher should provide in-person

feedback (individually or group) or written comments to students. The feedback should give

information about the project per se and the process followed by students. Directions of how

to improve them (project, process) and clarifications of concepts and procedures that were

not completely understood can be considered as effective feedback for students (Hattie and

Timperley, 2007). It is important to remark that feedback should not necessarily be

accompanied by a grade. Indeed, studies have shown that written comments alone heighten

the student’s learning (Hattie and Timperley, 2007).

4.7 Achieving meaningful learning and developing skills via the framework

As seen in chapter 1, promoting meaningful learning (i.e. having relevant knowledge that can

be used to solve new problems and to understand new concepts) requires the use in

combination of four vital activities: listening, talking, reading and writing. In this respect,

Hagström and Lindberg (2012, 122) argue that "learning and the use of language are

inseparable" (Hagström and Lindberg, 2012). This means that students must write and

www.manaraa.com

96

communicate with others their reflections, comparisons, analysis, and conclusions to

demonstrate their learning growth (Hagström and Lindberg, 2012).

In this chapter and in the other four examples included in Appendix XV, the four vital

activities have been exploited not only to promote meaningful learning in students but also to

expand the development of communication, interpersonal (ability to communicate with

others) and thinking skills (the ability to engage in reflective and independent thinking).

Accordingly, listening to a lecture contributes to create meaning; however, this activity could

have a short-lived effect without the other complementary activities (in class activities,

discussion, reading, group project and so on). In the case of reading, it gives good

possibilities for reflection (during the time devoted for reading) which facilitates the

achievement of higher levels of cognitive processing. Besides, talking helps students to

identify inconsistencies as well as narrow and limited thoughts or perspectives, which also

contributes the development of a critical way of thinking. Furthermore, writing is very

effective for this purpose because during the writing process, students need to think

reflectively in order to write in a coherent way by organizing their thoughts (Garrison and

Archer, 2000).

This framework should be considered as a point of departure for teaching software

measurement. We suggest personalizing this resource (the framework) according to: your

teaching style, time constraints, learning environments, and the students' needs. The

personalization can facilitate the reaching of the expected learning outcomes and can expand

the possibilities for developing communication, interpersonal and thinking skills in students.

Undoubtedly, the development of skills cannot be achieved in one single course; it should be

performed throughout the whole university program. Finally, the examples presented as part

of this framework should not be taken as the unique possibility to teach software

measurement for undergraduates. Certainly, with your imagination, many other creative ways

to teach the proposed content and to use the four vital activities may emerge from the

revision and/or usage of this framework.

www.manaraa.com

CHAPTER 5

EVALUATION OF THE PROPOSED FRAMEWORK

This chapter focuses on the evaluation of the proposed educational framework. The activities

performed within this evaluation phase are shown in Figure 5.1 and presented in details in

this chapter.

5.1 Purpose and Scope of this evaluation

The purpose of evaluating the proposed framework is to determine the extent to which the

framework is perceived as useful for the enhancement of software measurement education at

the undergraduate level prior its deployment in a university setting.

The scope of the evaluation is limited to analyzing the perceptions of university teachers

about the impact that the framework may have in an educational context. The evaluation does

not include the implementation of the framework in the academic environment. However,

previous to the evaluation by teachers, the understandability of the activities and examples

proposed in the framework were evaluated by novices in software measurement.

5.2 Evaluation criteria

The criteria employed for evaluating the proposed educational framework have been adapted

from the theoretical model of Gopal et al 2002. The Gopal et al. model was used to test the

effects of various factors that affect metrics programs success (Gopal et al., 2002). Other

evaluation works (Gresse von Wangenheim, Thiry and Kochanski, 2009; Kay, 2011;

Stamelos et al., 2000) - focused on learning objects, learning games, and educational

software - were also used to develop a new evaluation model for the present thesis (see

Figure 5.2). This new model is meant to investigate the factors (Factor 1 and Factor 2 from

figure 5.2) that may influence teachers on adopting the educational framework.

www.manaraa.com

98

Figure 5.1 Detailed activities for evaluating the proposed educational framework

Planning

Evaluation

Submit documents to the
Ethics committee for approval

Approval?

Pre-test the instruments #1 and #2

Improve the instruments #1 and #2

Plan the data collection process

Collect data from students using instrument #1

Analyze data from instrument #1

Improve instrument #2

Define the purpose and scope

Define the evaluation criteria

Design the evaluation instruments #1 and #2

No

Yes

Collect data from teachers using instrument # 2

Analyze data from instrument #2

Document the findings

www.manaraa.com

99

According to our model, the framework's design (Factor 1), on the one hand, is expected to

have an effect on the usage and perceived usefulness of the educational framework. On the

other hand, the engagement of academia -teachers and authorities- (Factor 2) can influence

the perceived enhancement of the teaching and learning process in software measurement. In

addition, the usefulness of the framework can positively affect the stakeholders’ perception

that the teaching and learning of software measurement can be improved.

Figure 5.2 Model to evaluate the proposed educational framework, adapted from Gopal et al.
2002

As shown in Fig. 5.2, factors 1 and 2 may influence the adoption of the proposed framework

(i.e. Impact 1: Usefulness USEF) and the enhancement of software measurement education

at the undergraduate level (i.e. Impact 2: Enhancement ENHA).

In the case of factor 1, the issues involved are: the content, and the friendliness of the

framework. In the case of factor 2, the issues consist of: the willingness of teachers to adopt

the framework, and the facilities provided by universities for facilitating the adoption of the

framework. These issues are based on the work of (Anderson et al., 2001; Biggs, 1995; Biggs

and Tang, 2007; Kay, 2011; Stamelos et al., 2000). The issues per type of factor are listed

next.

Impact 1: Perceived
usefulness of the

educational framework

Impact 2: Perceived
enhancement of the education

in software measurement

Factor 1:
Proper design of the

educational
framework

Factor 2:
Engagement of

academia

www.manaraa.com

100

Factor 1: Proper design of the educational framework

Issue 1: Content of the framework (CONT)

• Defined ILO (Intended Learning Outcomes) for each topic to be covered.

• Availability of teaching materials (slides, exercises, bibliographic references, useful

links, etc)

• Description of how to conduct teaching and learning activities (lectures, work groups,

discussion, etc)

• Availability of examples regarding activities and assessment tasks

• Rubrics with criteria for assessment of learning

Issue 2: Friendliness of the framework (FRIE)

• Easy to use.

• Understandable

• Not boring

• Includes Tables and figures.

• Well organized

Factor 2: Engagement of academia

Issue 1: Willingness of university teachers to use the framework (WILL)

• Motivation of teachers on the use of the framework

• Alignment of teachers with the proposed framework (current trends of higher education

practices)

• Awareness of the importance of software measurement

Issue 2: University facilities (FACI)

• Availability of resources and learning environments for using the framework (classrooms

for group work, audiovisual aids, books, etc)

• University support (openness to adopt a constructivist approach)

www.manaraa.com

101

Regarding the Impacts 1 and 2 shown in Figure 5.2, they represent the dependent variables of

Factors 1 and 2. This means that a positive relationship exists between the framework’s

design (in terms of its capacity to attract teachers - CONT & FRIE) and the teachers’

perceptions of its usefulness as a resource for teaching and learning. Because of its

usefulness (USEF), teachers would be willing to adopt the framework (Factor 2: Willingness

- WILL) which, in turn, may enhance software measurement education (Impact 2:

Enhancement - ENHA). To accomplish this, support from universities (in terms of resources

and policies - FACI) is needed to promote new trends in higher education.

In the evaluation model, the two factors (Factor 1 and Factor 2) and their impacts (Impact 1

and Impact 2) are constructs - an abstraction of a subject that is being studied. A construct

cannot be observed and measured directly; therefore, it needs to be inferred through

observable and directly measured variables (SAGE Research Methods, 2013).

The next section describes the instruments used for the evaluation of the framework,

including a detailed explanation of the constructs.

5.3 Instruments

To evaluate the framework, two instruments were designed; one for learners and the other for

university teachers. The ethics committee of ETS gave the approval for performing the

evaluation of the framework and using the instruments on February 28th 2013.

5.3.1 Instrument designed for learners

The objective of this instrument (instrument #1) is to know the perception of students about

the understandability of a sample of software measurement examples and assessment tasks

(exercises, readings, project, etc) to be included in the framework.

www.manaraa.com

102

The instrument designed for this purpose is a questionnaire containing two sections: 1)

general information and 2) evaluation of the understandability of examples and tasks (see

appendix XVI).

The section 1 (general information) includes three questions about the previous knowledge of

software measurement, while section 2 includes five activities to inquire learners about the

improvements needed to make the examples and tasks clearer and more understandable.

Section 2 is meant to receive written feedback from the learners for building a useful

framework. That is, a framework that contains: guidelines with clear examples of how to

measure the functional size of a piece of software, and comprehensible instructions for

learners of how to perform tasks proposed in the framework to assess their level of learning.

Each of the five activities included in the questionnaire requires from learners: indicating the

level of agreement with statements related to the understandability of the examples or tasks;

circling the words or phrases that were not understood; and providing suggestions of how to

improve those examples or tasks (i.e. what to add or change). Each activity was measured

through a set of statements by using a five points Likert scale - from Strongly agree (5) to

Strongly disagree (1).

The five activities are:

Activity 1: Questions for an assigned reading

Activity 2: Basic example of measuring functional size (Register a new customer)

Activity 3: Example of measuring functional size where an interaction with other system is

required (Withdrawal from an ATM machine).

Activity 4: Class assignment (obtain the functional size of a purchase order by working in

groups)

Activity 5: Project assignment (compendium of the material learned in the course - group

project)

www.manaraa.com

103

5.3.2 Instrument designed for teachers

The objective of this instrument (instrument #2) is to determine the level of adoption of the

proposed framework by its potential users. A questionnaire - in English and Spanish - was

designed for this purpose.

The questionnaire is divided into two sections: 1) General information and 2) Evaluation of

the proposed framework.

Section 1 includes four questions related to the teaching experience of the participants, and

section 2 includes the statements for the four constructs (Factor 1, Factor 2, Impact 1 and

Impact 2).

Each construct was measured through a set of statements by using a five points Likert scale -

from Strongly agree to Strongly disagree. In the case of constructs 1 and 2, both were

divided in two sub-constructs.

The statements used for measuring each construct are the following:

Construct 1: Factor 1 (Proper design of the educational framework)

Sub-construct 1-1: Factor 1, Issue 1 (Content of the framework - CONT)

• Having a suggested content for the teaching of software measurement would be a

valuable resource for teachers.

• Availability of a set of suggested learning objectives would facilitate teachers to evaluate

the students' performance.

• The learning objectives suggested in the educational framework are useful in guiding

teachers to focus their attention on relevant software measurement topics.

www.manaraa.com

104

• The accessibility to teaching materials related to software measurement (e.g.

bibliographic references, rubrics, examples of exercises, useful links, etc.) would

facilitate the teaching of software measurement.

• Having a set of suggested activities for teaching and learning software measurement (e.g.

lectures, class discussion, workgroups, etc.) associated to the learning objectives would

increase the odds that students accomplish the expected outcomes.

• The availability of rubrics that include assessment criteria would provide an objective

guidance for assessing the students' performance in software measurement.

• The content of this framework (learning objectives, teaching activities, rubrics, etc.) is

relevant to my interests in teaching software measurement.

Sub-construct 1-2: Factor 1, Issue 2 (Friendliness of the framework - FRIE)

• The framework is presented in a way that has kept my attention during the whole reading

• The figures and tables helped me to understand the examples provided in the framework

• The examples included in the framework are easy to follow

• The instructions for the activities and task are easy to follow

• The framework is easy to use

• The framework is well organized

• This framework is understandable

• The framework made me learn about teaching and learning in a pleasant way

Construct 2: Factor 2 (engagement of academia)

Sub-construct 2-1: Factor 2, Issue 1 (Willingness to use the framework - WILL)

• I will use this framework to teach my courses

• I would like to read more examples included in this framework

• I liked the material included in the framework (content, teaching and learning activities,

assessment tasks, rubrics, etc.)

www.manaraa.com

105

• I found the framework engaging

• I would recommend the proposed educational framework to my colleagues

• Having an educational framework suggesting content, teaching materials, learning

objectives, assessment criteria would serve as a motivating factor for its adoption among

teachers

• Availability of an educational framework would raise teachers' enthusiasm exploring new

ways of teaching of software measurement topics

• Teachers would be willing to adopt an educational framework aligned with the current

trends of higher education practices

• Due to the fact that the educational framework emphasizes the importance of software

measurement, it would encourage teachers to its adoption.

Sub-construct 2-2: Factor 2, Issue 2 (University facilities - FACI)

• For the adoption of the proposed educational framework, teachers would require the

support of university principals (i.e. departmental chairs) for adjusting their courses to

embrace the suggested content, learning objectives, teaching methods, learning activities

and assessment criteria.

• Having the support from university authorities for making changes in courses related to

software measurement would facilitate teachers to adopt the proposed educational

framework.

• The availability of learning environments (i.e. having the required labs, audiovisual

facilities, classroom distribution for allowing group work) would facilitate the adoption

of the proposed educational framework.

Construct 3: Impact 1 (Usefulness of the framework - USEF)

• I think that the proposed educational framework would be useful for the teaching and

learning of software measurement at the undergraduate level.

www.manaraa.com

106

• Having an educational framework would facilitate the development of a common

curriculum of software measurement for undergraduate students.

• The proposed educational framework would awaken students to the relevance of software

measurement in being better prepared for the software industry demands.

• I have positive feelings on the usefulness of the proposed framework.

• For learning purposes, this framework is very useful.

• The examples provided in the framework are helpful.

Construct 4: Impact 2 (Enhancement of the education - ENHA)

• An educational framework, commonly used by teachers, would facilitate the development

of joint projects among scholars. The projects could be related to the improvement of the

education in software measurement for undergraduates.

• The improvement of the teaching and learning process in the software measurement

domain would be possible by using this framework.

• The proposed educational framework would contribute to the development of the

students' critical thinking skills that need to be developed during their university career.

• The type of activities promoted in the educational framework would facilitate the

enhancement of the students' problem solving skills.

• The teaching and learning activities suggested in the educational framework would

facilitate the enhancement of students' teamwork skills.

• The proposed framework would facilitate teachers to better prepare students on the

fundamentals of software measurement allowing them to initiate in activities related to

software process improvement in organizations.

• By reading this framework, I have gain knowledge about general teaching and learning

practices.

• As a teacher, I feel that I have learned while reading this framework.

• The application of this framework can help students achieve the learning goals.

• The framework contributes to the learning of software measurement.

• Overall, the proposed framework will help students to learn software measurement.

www.manaraa.com

107

• In general, the framework will help teachers improve their teaching of software

measurement.

It can be observed that each construct has several statements. This is necessary to test the

reliability of the constructs. This means that the responses to the statements within the same

construct should demonstrate correlation. A high correlation ensures that the constructs are

measured properly (Gopal et al., 2002).

The statements in the constructs were arranged randomly to avoid the respondents’ bias in

choosing similar value for each statement’s answer. This means that we wanted to diminish

the respondents’ tendency to agree with the statements independent of content. In addition,

the respondents (evaluators) were asked to:

• work as quickly as they could without thinking too deeply about any statement and going

back to review responses given to similar statements, while marking down their first

thought -Strongly agree to Strongly disagree (Pre-test with paper questionnaire)

• answer the questionnaire by taking into account that the system would not allow them to

go back to the previous page to check their answers - Strongly agree to Strongly disagree

(Evaluation with an online questionnaire)

The questionnaire is included in Appendix XVII.

5.4 Pre-test of the instruments

5.4.1 Pre-test of the instrument #1 - for learners

The pre-test of this instrument consisted of the revision of the wording of the questions and

the organization of the activities contained into the questionnaire. The pre-test was conducted

with two PhD students and two teachers.

www.manaraa.com

108

Few changes were suggested by the participants, as follows:

• Do not present two activities in the same page; use a new page to start an activity.

• Be consistent with the use of words; avoid using different names for the same

subject/object.

• Instead of using the word "task", specify the type of task (reading, exercise in class,

project) from which an answer/opinion from students is expected.

• Instead of using the word learning, be more specific about what the students should be

able to do (e.g. measure the functionality of the software).

5.4.2 Pre-test of the instrument #2 - for teachers

The pre-test of this instrument was performed in Lima, Peru during the Ibero-American

software engineering conferences. Nine participants (university teachers) attending the four-

hour tutorial named "A Constructivist Approach for the Teaching of Software Measurement"

received training on the concepts and application of the proposed framework. The training

also included some of the examples presented in chapter 4 of this thesis.

The instrument was also tested by three other professors who were not participating in the

conferences. Two of them work on research in higher education, and the third has special

interest in teaching functional size measurement for undergraduates.

From the pre-test, the following changes were suggested for the framework and the

questionnaire:

• Avoid using acronyms (TLA, AT, ILO), especially at the beginning of the examples.

• Define the approximate time required for each activity performed in class.

• Rearrange the order of the material presented in the framework.

• Include guiding reading questions.

• Give step by step guidelines for group work activities.

www.manaraa.com

109

• Explain how the feedback has to be implemented.

• Include self and peer assessment.

• Change the wordiness of some questions in the questionnaire.

The suggestions were taken into consideration for the development of the complete

framework (chapter 4 and appendices XV and XXVII) and the final version of the evaluation

questionnaire addressed for teachers.

5.5 Data collection and findings from instrument #1 (learners)

5.5.1 Data collection from potential learners

The data collection was performed at the beginning of June 2013 with 12 voluntary

participants: 4 students who were taking the course of Software Measurement at ETS, 1

foreign student doing an internship at ETS, 3 PhD students, 3 practitioners with a bachelor

diploma in computer science working on software related areas, and 1 practitioner from the

telecommunication sector. Eight participants did not have previous knowledge of software

measurement and four had little knowledge acquired in courses such as: project management,

software engineering and software quality.

The participants took 30 to 70 minutes to review the examples and answer the questionnaire,

plus a short break of 5 minutes. The purpose of the break was to keep them attentive to

identify improvements needed in the educational material included in the questionnaire

(functional size measurement examples and assessment tasks). When the participants

finished answering the questionnaire, I reviewed their responses with each of them to assure

that I understood all their comments and suggestions. Special attention was given to the

participant from the telecommunication sector since we wanted to test the pre-requisites (see

chapter 4) needed to learn from the examples proposed in the framework.

www.manaraa.com

110

5.5.2 Findings

The tables 5.1 and 5.2 show the results obtained for each activity. The second column of the

table represents the statistical mean of the level of agreement expressed by participants

(inexperienced students and practitioners) regarding the statements formulated for each of the

five activities (see section 5.3.1). The results in terms of level of agreement show that the

activities #1 and #4 are less clear and understandable than the other three activities.

Therefore, both activities are less likely to contribute with the expected learning outcomes

and need to be improved for understandability and clearness purposes. The suggested

improvements are shown in the third column of the table. All of them were made to develop

the whole version of the framework.

Collecting data from inexperienced students and practitioners was good in the sense that it

allowed the identification of strengths and weaknesses in the sample of examples used for

testing the understandability of the educational material. Such strengths and weakness are

summarized as follows:

Strengths:

• Interface: The use of graphics/figures/tables to explain the two measurement examples

are useful to understand the functionalities to be measured.

• Detailed guidelines for the group project: The detailed instructions provided to students

to perform the project are practical. With them, students know what to do and what the

teacher expects from them.

Weaknesses:

• Ambiguity of questions for Activity 1 (guiding questions for a reading): The potential

learners suggested rewriting questions 1 and 3 because they were not clear enough and

several interpretations were possible to infer.

• The lack of written specifications for Activity 4 (exercise in class): The potential learners

consider that the explanations of the teacher may not be enough for performing the

www.manaraa.com

111

exercise in 20 minutes. So, the learners suggested including the written specifications,

similar to what was performed in activities 2 and 3.

• Highlight learning outcomes: The learners suggested highlighting the learning outcomes

because, at the end, they did not remember what the learning purpose was.

All of these suggested changes were used to enhance the understandability and readability of

the examples and assessment tasks included in the framework to be evaluated by university

teachers. Examples of the improvements made in the framework are:

• The addition of footnotes in the tables that show the calculation of the functional size of

the software reminding the meaning of E, X, R and W.;

• The reduction of complexity of Activity 4 (exercise in class to practice functional size

measurement) in order to assure that the exercise can be performed in 20 minutes.

• The inclusion of written specifications in the Activity 4 to complement the explanation

provided by the teacher.

5.6 Data collection and findings from instrument #2 (university teachers)

5.6.1 Data collection

At the end of August 2013, we sent invitations by e-mail to 34 university teachers who

participated in the previous studies and manifested their interest in knowing and evaluating

the proposed educational framework. The invitation contained a link to the questionnaire

developed with LimeSurvey 2.0 which appears in the appendix XVII. From the date that

teachers received the invitation, they had 30 days to review the framework and return the

evaluation questionnaire (instrument #2). Since only few teachers met with the deadline, it

was necessary to extend the evaluation period until mid of November. During this period,

only 21 teachers returned the evaluation questionnaire. As it was difficult to find more

respondents, the data analysis was performed with this number of responses.

www.manaraa.com

112

Table 5.1 Findings of the evaluation performed with instrument #1(learners)

Activity 1: Questions for an assigned reading

Statements Mean Improvements needed

Guiding question #1 is clear/understandable 4
1. Split question #1 in two questions.
2. Rewrite question #3 to make it
unambiguous.

Guiding question #2 is clear/understandable 5

Guiding question #3 is clear/understandable 4.5

The guiding questions are helpful for students 4

Activity 2: Basic example of measuring functional size (Register a new customer)

Statements Mean Improvements needed
The example is clear (the functionality to be
measured is understandable)

5
1. Explain the acronyms (E, X, R, W,
CFP).
2. Add an extra explanation about the
counting of data movements when the
user edits the customer data.
3. Give more emphasis to the arrows
that show the data movements

The procedure followed in the example is
easy to understand

4.5

The figure helps you to understand the
example

5

After reading the example, you can measure a
small-well-documented set of simple
functional requirements

5

Activity 3: Example of measuring functional size where an interaction with other system is
required (Withdrawal from an ATM machine).

Statements Mean Improvements needed
The example is clear (the functionality to be
measured is understandable)

5
1. Add an explanation for each data
movement, especially when there is a
communication with other systems.
2.Write all the assumptions (pre-
conditions) to perform the withdrawal
functionality in order to make the
example clearer.
3. Include the steps that have to be
followed for measuring the Functional
Size.

The procedure followed in the example is
easy to understand

4.5

The figure helps you to understand the
example

5

After reading the example, you can measure a
small-well-documented set of simple
functional requirements

4

www.manaraa.com

113

Table 5.2 Findings of the evaluation performed with instrument #1(learners)

Activity 4: Class assignment (obtain the functional size of a purchase order by
working in groups)

Statements Mean Improvements needed

The user interface is easy to understand 4.5
1. Add written specifications
to complement the
explanation of the teacher.
2. The written specifications
are necessary to understand
the data model and user
interface without written
specification.
3.The user interface should
show the sequence of steps to
enter a purchase order.
4.Allocate more time to
make this exercise in class.

The data model is easy to understand 4.5
The instructions provided by your teacher
are clear (You understand the task that you
have to do)

3.5

The time assigned to perform the task is
reasonable

3

Working with classmates allows to gain
and to share knowledge

4.5

Working with classmates will facilitate the
development of this exercise

4.5

By performing this exercise you will
improve your knowledge of functional size
measurement

4

Activity 5: Project assignment (compendium of the material learned in the course
- group project)

Statements Mean Improvements needed
The instructions to perform the project are
clear (You understand what you have to
do)

5
1.The ILOs (intended
learning outcomes) should be
highlighted in the
explanation of the project.
2.Specify the difference
between time and effort
3.Add the link of the ISBSG
website in the instructions

Working with classmates allows to gain
and to share knowledge while developing
the project

4.5

Working with classmates will be helpful to
perform the project (sharing tasks,
identifying mistakes, having more ideas to
do a better job)

4.5

By performing the project you will be able
to reach the learning outcomes

4.5

www.manaraa.com

114

5.6.2 Findings

From the 21 participants:

• 57% has more than 10 years of teaching experience in topics related to software

measurement;

• 43% works in software engineering departments; and 52% in computer science

departments at universities;

• 90% teaches courses related to software measurement for both undergraduate and

graduate students.

Table 5.3 presents the means (M), standard deviations (SD), Cronbach’s alpha coefficients

and intercorrelations among the variables of interest for the evaluation of the framework;

these are: CONT, FRIE, WILL, FACI, USEF, ENHA (see section 5.3.2). The numbers in

bold represent the Cronbach's alpha coefficients which denote the internal consistency

between the items (questions) of the instrument used in the evaluation (questionnaire). The

higher the coefficient, the higher the reliability among the questions of the same construct

(Webster, 2000). Generally, acceptable coefficients for survey research should be higher

than 0.7 (Gopal et al., 2002). All the coefficients were well above this cut-off point, except

for one of them that is close to this value, which is acceptable for a newly developed measure

(Nunnally and Bernstein, 1994).

Table 5.3 Correlation matrix

 M SD 1-1 1-2 2-1 2-2 3 4

 1-1 CONT 4.456 0.416 0.788
 1-2 FRIE 4.405 0.559 .615** 0.867
 2-1 WILL 4.280 0.471 .811** .666** 0.801
 2-2 FACI 3.683 0.734 0.342 0.207 0.174 0.619
 3 USEF 4.500 0.435 .831** .755** .724** 0.287 0.708
 4 ENHA 4.321 0.433 .795** .664** .716** 0.337 .867** 0.882

N=21; ** The correlation is significant at p < .01 (bilateral)

www.manaraa.com

115

In Table 5.3, the numbers below the diagonal represent the correlation value between each

pair of variables. From this table, it can be observed that all variables except FACI

(subconstruct 2-2) are correlated at the 0.01 significance level. This result indicates that the

variable FACI does not have a relationship with the other variables. As described in section

5.3.2, FACI is a sub construct involving two factors: one is the availability of resources and

learning environments for using the framework; and the other refers to the university support

to adopt a constructivist approach. According to the results presented above neither the two

predictor factors have an impact on the two dependent variables; that is, the perception on the

usefulness of the framework and the enhancement of education in software measurement.

In order to test the relationship between the independent variables (content - CONT,

friendliness FRIE, willingness WILL, and facilities FACI) and the dependent variables

(usefulness USEF, enhancement ENHA, and willingness WILL), a regression analysis was

performed (see section 5.2 for the explanation about the independent and dependent

variables). Table 5.3 shows the coefficients, standard errors and level of significance of the

linear relationship between the independent and dependent variables.

Table 5.4 shows the relationship between usefulness -USEF (dependent) and content CONT

(independent) and friendliness FRIE (independent). The variable CONT is significant at

0.0001 and FRIE at 0.05. These findings indicate that both variables, CONT and FRIE, have

an influence in the teachers' perception regarding the usefulness (USEF) of the framework,

especially the content.

Table 5.4 Regression results - Dependent variable: USEF

Variable Coefficient
Std

Error
Significance

p value
Constant 0.411 0.517 0.437
CONT 0.616 0.145 0.000
FRIE 0.305 0.108 0.011

F value=32.937; p<0.0001
R2=0.762;
N=21

www.manaraa.com

116

Table 5.5 presents the relationship between willingness - WILL (dependent) and content

CONT (independent) and friendliness FRIE (independent). In this case, only the variable

CONT is significant at 0.001. This indicates that the willingness of teachers to adopt the

framework (WILL) relies on its content (CONT) rather than its friendliness (FRIE). This is a

very important finding because it seems to indicate that the content is more essential than

friendliness despite the effort spent in developing friendly educational resources.

Notwithstanding, further research is needed to corroborate this result.

Table 5.5 Regression results - Dependent variable: WILL

Variable Coefficient
Std

Error
Significance

p value
Constant 0.024 0.660 0.971
CONT 0.731 0.185 0.001
FRIE 0.227 0.137 0.117

F value=21.226; p<0.0001
R2=0.669
N=21

Table 5.6 shows two relationships in which the enhancement of the education in software

measurement (ENHA) acts as a dependent variable. The first relationship identifies if ENHA

depends on: the willingness of teachers for adopting the proposed framework (WILL), and

the facilities and support of university authorities for using the framework. In this regard,

only the willingness of teachers (WILL) is strongly significant at 0.0001 and impacts the

perception about the enhancement of the education in software measurement. The second

relationship shows that the enhancement of the education in software measurement (ENHA)

depends on the usefulness of the framework (USEF). This relationship is certainly significant

at the 0.0001 level. Consequently, a perceived usefulness of the proposed framework by

teachers leads to a perceived enhancement of the education in software measurement.

www.manaraa.com

117

Table 5.6 Regression results - Dependent variable: ENHA

Variable Coefficient
Std

Error
Significance

p value
Constant 1.175 0.663 0.930

WILL 6.240 0.146 0.000
FACI 0.129 0.940 0.185

F value=11.423; p<0.001
R2=0.510
N=21

Variable Coefficient
Std

Error
Significance

p value
Constant 0.434 0.516 0.411

USEF 0.864 0.114 0.000
F value=57.360; p<0.0001
R2=0.738
N=21

Finally, the results of the present study should be considered with caution since the number

of data is small. Therefore, generalizations should not be made from these results as more

data are needed to perform more precise analysis about the relationships among the variables.

As mentioned in chapter 6, future research should consider the evaluation of the framework

to determine the impacts in terms of students' learning. For this kind of evaluation, a model

similar to the one presented in this chapter can be used.

www.manaraa.com

www.manaraa.com

CHAPTER 6

CONTRIBUTIONS AND FUTURE WORK

6.1 Contributions

The research focus of this thesis work was the development of an educational framework

intended to promote the achievement of learning outcomes in undergraduate students. For its

development, it was necessary to determine first the state of the art of software measurement

in higher education and to identify the priorities of this subject matter for undergraduates.

The research findings have led to 8 publications: 6 for conferences, one accepted journal and

one submitted journal - see appendices XVIII to XXV. These publications, the framework,

and other documents included as appendices have been created for the benefits of the

following audiences:

University teachers or instructors: The proposed educational framework provides

guidelines to assist university teachers in the teaching process of software measurement

topics at the undergraduate level. These guidelines follow a constructivist approach by

offering a variety of pedagogical techniques through examples related to: teaching and

learning activities, approaches to assess learning, and exercises - See chapter 4 and

appendices XV, XX, XXV, and XXVII.

Undergraduate students attending software engineering programs or beginners in the

software measurement field: The framework allows students to learn software measurement

starting from the basis (Basic concepts in software measurement) and going through the

measurement process, measurement techniques and specific measurement methods. In

addition, students can attain the learning goals by being exposed to real life examples (e.g.

measuring the functional size of a "purchase order" or "online shopping") - See chapter 4 and

appendices XV and XXVII.

www.manaraa.com

120

Related bodies of knowledge: During the research phases, several opportunities for

improvement were identified in existing documents related to software measurement. In this

regard, the bodies of knowledge can use the recent work as a way of enhancing the

corresponding documentation - See appendix XXVIII. Also, a mapping of software

measurement topics was developed among three bodies of knowledge (see chapter 1 - Table

1.2).

Software measurement organizations: These software measurement organizations can use

the educational framework for providing training to practitioners. Also, they can take ideas to

develop assessment activities for certification purposes (chapter 4 and appendix XV). In the

case of the Common Software Measurement International Consortium (COSMIC), they have

access to a new case study developed as one of the examples of the framework (see the

online shopping example - appendix. XXVII). In addition, they have been provided with

suggestions to improve the understandability of the current and upcoming versions of the

COSMIC method (appendix XXVIII).

Software organizations: The educational framework can also be used for training purposes

at software organizations interested in starting or improving software measurement programs

(chapter 4 and appendices XV and XXVII). Moreover, some documents produced during this

research are useful for benchmarking purposes - in terms of certifications, software

measurement programs, tools used, knowledge of employees, software measurement

priorities for organizations (see chapter 3 and appendices XXI and XXII).

Researchers in education: This doctoral work is useful not only for further research in

software measurement education, but for any science or engineering field since it (this

research work) provides a roadmap to: identify priorities in any field; and to develop a

framework to fulfill the needs of education in a specific area of knowledge in addition to

examples of how to apply software engineering educational research methodologies (chapters

3 to 5; and appendices VI to XXIX).

www.manaraa.com

121

6.2 Implications for future research

From the findings of the literature survey, this thesis is the first research work that:

• explores software measurement in higher education in depth;

• tackles its teaching for undergraduate students by identifying the priorities of this subject

matter; and

• proposes an educational framework based on the constructivist approach.

Therefore, this research can be considered as a starting point to conduct further research

projects in the software measurement educational field, such as:

A. The development a common curriculum of software measurement for

undergraduate students: This curriculum can be designed by taking as an input the

proposed framework: that is, including the priorities for undergraduates (current

framework) and adding complementary topics that can be covered in undergraduate

courses or seminars related to software measurement.

B. The update of the software engineering curriculum guidelines for undergraduate

students in topics related to software measurement: The curriculum guidelines can be

updated by applying the suggestions presented in appendix XVIII, especially the

summary of topics to be covered, levels of learning, and suggested number of hours

presented in section 1, table 1 of this appendix XVIII.

C. The enhancement of the proposed educational framework for undergraduates or

beginners in the field: Some of the foreseen opportunities of improvements are:

• Increase the type and number of teaching and learning activities and assessment tasks.

• Enlarge the number of exercises and examples for each topic, which have to be both

simple and real-world situations.

www.manaraa.com

122

• Update the current examples of functional size measurement developed with the

COSMIC method version 3 to: the upcoming version 4 when this becomes available, and

other functional size measurement methods like IFPUG.

• Improve the current version of the website for teaching software measurement to make it

more attractive and interactive (e.g. forums, games).

• Videotape lectures and interactive lectures to make them available on the website.

• Incorporate theory and activities specifically devoted to the development of skills (i.e. for

teachers who have more hours assigned to the subject matter or who are interested in

developing skills in their students).

D. The creation of a research group or community focused on software measurement

for higher education: A research group can be created with the university teachers who

have already manifested interest in using the framework (see appendix XXX). By having

a research group, the following activities can be performed:

1) Test and enhance the framework (iterative process):

• Test the propose framework through experimental studies with undergraduate

students (in progress).

• Evaluate the usefulness of the framework by using a model similar to the one

presented in chapter 5. The model should be tailored to determine the engagement of

the students (see figure 5.2 - Factor 2) and to determine the impacts in terms of

students' learning.

• Improve the framework based on the results of the evaluation.

• Conduct further experimental studies in several universities by using an enhanced,

extended and standardized version of the framework.

• Compare learning results and identify new improvements needed.

2) Extend the scope of the framework (from beginners to intermediate and advance

levels) by taking as an input the layer representation of the software measurement

topics presented in the Figure 3.2 (chapter 3).

www.manaraa.com

123

• Identify priorities for the intermediate and advance levels (e.g. master programs,

practitioners)

• Identify levels of learning expected to achieve by students and the complementary skills

• Develop an extended version of the framework with the 2 new levels.

• Propose a common curriculum for the intermediate and advance levels.

3) Enrich the knowledge of software measurement

• Produce publications related to the education of software measurement.

• Produce a textbook of software measurements

6.3 Research impact

As mentioned before, this thesis is the first - since METKIT 20 years ago- focusing in the

enhancement of the education of software measurement in universities at the undergraduate

level. By continuing this line of research, a number of impacts can be foreseen in the short

and long term for the academia and industry.

In the short term:

• For teachers already teaching software measurement: to have the possibility to improve

their teaching of software measurement through the use of the framework and available

publications which are included in http://software-measurement-education.espol.edu.ec/.

• For undergraduate students exposed to the framework: to learn software measurement in

a practical way and with real-world examples.

• For new teachers and learners: raise their interest in learning software measurement, a

topic rarely explored in the educational context.

• For novice professionals: access to examples and theory (easy to read) to learn the basis

of software measurement and functional size measurement.

www.manaraa.com

124

In the long term:

• At universities:

o Breaking perceptions that software measurement is difficult and hard to learn.

o Promoting a software measurement culture among software engineering

students.

o Adopting common software measurement terminology and practices by

applying a standardized framework of software measurement or a common

curriculum.

• At software development organizations:

o With employees who are aware of the existence and importance of software

measurement.

o With employees able to participate in software measurement programs

o With employees having knowledge to start measuring the functional size of

software applications with the COSMIC method or able to learn in depth a

different method (i.e. by using the basis acquire at the university).

6.4 Limitations of this research

Some limitations and validity threats of this research have been identified and summarized in

the articles presented/submitted to conferences and journals (see appendices XIX, XXII and

XXIII). Additional limitations are mentioned next:

• This research work mainly considers the application of the Bloom's taxonomy and partial

use of the SOLO taxonomy. Others taxonomies can be used; however, this research

wanted to be aligned with the current curriculum guidelines on software engineering.

• The scope of the educational framework is limited to beginners in software measurement.

It covers only five software measurement topics and the corresponding levels of learning.

More research is needed to extent the scope to the intermediate and advance levels.

• In general, there are only a couple of examples of suggested teaching activities and

assessment tasks for each of the five topics included in the framework. More examples

www.manaraa.com

125

are needed to better explain the suggested activities and tasks. In addition, other kind of

activities and tasks can be incorporated.

• All the examples of functional size measurement were developed by using the COSMIC

method v3.0.1, which was the latest published version available at the time the

framework was proposed. The same examples can be developed with other methods or

the upcoming new version of COSMIC.

• The framework contributes to the development of skills in an indirect way but this is not

its main purpose. Complementary research is needed to look for pathways to develop

skills in undergraduate students.

• Only the set of examples developed for the topic measures for the requirements phase

has been used in a software measurement course taught at the Software Engineering

Department of Izmir University of Economics (mid December 2013). This part of the

framework as well as the rest of examples are expected to be used at universities in Spain

in February 2014, in Ecuador in the second semester of 2014, in Peru in March 2014, and

Canada.

• The proposed framework was evaluated by 21 university teachers with experience in

software measurement. Despite the small number of teachers, it was possible to test the

model through correlations and linear regression. The reliability test (Cronbach's alpha)

demonstrates that the instrument used for the evaluation is valid and that the theoretical

constructs are properly measured. Notwithstanding, another way to test the model is

through factor analysis, which it could not be performed due to the limited number of

evaluators. This number is limited by the fact that software measurement is a specialized

field and there are not many university teachers with the expertise, time and willingness

to perform the evaluation.

• The use of the framework demands: a commitment from teachers to adopt the

constructivist philosophy; a strong desire to teach the course in order to reach deep

learning in students; and passion and creativity to tailor the framework to serve students

needs.

www.manaraa.com

www.manaraa.com

ANNEX I

LIST OF APPENDICES

The following list contains the appendices referenced within this thesis, which are included

in the CD-ROM.

Appendix Filename Content

I Appendix I Approbation finale Web survey

2011

CÉR approval of Web survey

II Appendix II Approbation finale Delphi 2012 CÉR approval of Delphi

study

III Appendix III Approbation finale Interviews CÉR approval of interviews

IV Appendix IV Approbation finale evaluation

framework

CÉR approval of the

evaluation of the framework

V Appendix V Approbation finale demande de

renouvellement

CÉR approval of the renewal

of the research project

(mandatory when the project

lasts more than one year)

VI Appendix VI Questionnaires for pilot test -

current state of software measurement in higher

education

Questionnaires of pilot test

VII Appendix VII Invitation Web survey by mail Invitation web survey

VIII Appendix VIII Questionnaire Web survey for

Teachers

Questionnaire web survey

teachers

IX Appendix IX Questionnaire Web survey for

practitioners

Questionnaire web survey

practitioners

X Appendix X Questionnaires Delphi Round 1 Questionnaires Delphi round

No.1

www.manaraa.com

128

Appendix Filename Content

XI Appendix XI Questionnaire Delphi Round 2 Questionnaires Delphi round

No.2

XII Appendix XII Questionnaires Delphi Round 3 Questionnaires Delphi round

No.3

XIII Appendix XIII Questionnaires Verification

Delphi

Questionnaires Delphi

verification

XIV Appendix XIV Questionnaires Interview

Teachers

Questionnaire Interview

teachers

XV Appendix XV Set of Examples for Teaching

Software Measurement

More examples of the

application of the framework

XVI Appendix XVI Questionnaire Evaluation

Students

Questionnaire for the

evaluation of the

understandability of examples

and tasks included in the

framework

XVII Appendix XVII Questionnaire Evaluation

Teachers

Questionnaire for the

evaluation of the framework

XVIII Appendix XVIII - Metrikon 2010 Software Measurement in

Software Engineering

Education: A Comparative

Analysis

XIX Appendix XIX - JSEA 2011 Facts and Perceptions

Regarding Software

Measurement in Education

and in Practice: Preliminary

Results

www.manaraa.com

129

Appendix Filename Content

XX Appendix XX - IWSM-Mensura 2011 Educational Issues in the

Teaching of Software

Measurement in Software

Engineering Undergraduate

Programs

XXI Appendix XXI - CCECE 2012 The Necessary Software

Measurement Knowledge

from the Practitioners’ Point

of View

XXII Appendix XXII - submitted to journal IJSEKE Software Measurement in

Higher Education

XXIII Appendix XXIII - SEAA 2012 Software Measurement in

Software Engineering

Education: A Delphi Study to

Develop a List of Teaching

Topics and Related Levels of

Learning

XXIV Appendix XXIV - JIISIC 2012 A Constructivist Approach

for the Teaching of Software

Measurement

XXV Appendix XXV - IWSM-Mensura 2013 Towards the Development of

a Framework for Education

in Software Measurement

XXVI Appendix XXVI - Educational Framework v.1 Proposed Educational

Framework v.1

XXVII Appendix XXVII - COSMIC case study Functional Size Measurement

for an Online shopping

application using COSMIC

www.manaraa.com

130

Appendix Filename Content

XXVIII Appendix XXVIII - Improvements suggested

to Bodies of Knowledge and COSMIC MPC

Summary of suggestions for

improvement sent to Bodies

of knowledge and COSMIC.

XXIX Appendix XXIX - Results Delphi study Summary of the results sent

to the participants of the

Delphi study.

XXX Appendix XXX - Framework interest E-mails received from

teachers

www.manaraa.com

LIST OF REFERENCES

Abran, A., P. Bourque and R. Dupuis. 2004. SWEBOK: Guide to the software engineering
Body of Knowledge. Los Alamitos, California.: IEEE Computer Society.

Abran, Alain. 2010. Software metrics and software metrology. New Jersey: IEEE Computer

Society / Wiley Partnership.

Abran, Alain 2011. Software sizing and Cosmic ISO19761 - Power Point Presentation.

Abran, Alain, Alain April and Luigi Buglione. 2010. « Software Measurement Body of

Knowledge ». Encyclopedia of Software Engineering. Vol. 1:1, no 1, p. 1157 — 1168.
Consulté le 26 January 2011.

Amos, T., and N. Pearse. 2008. « The delphi technique and educating entrepreneurs for the

future ». In 7th European Conference on Research Methodology for Business and
Management Studies. p. 17-24. Academic Publishing Limited, Reading, UK 2008

Anderson, Lorin, David Krathwohl, Peter Airasian, Kathleen Cruikshank, Richard Mayer,

Paul Pintrich, James Raths and Merlin Wittrock. 2001. A taxonomy for learning,
teaching and assessing. A revision of Bloom's taxonomy of Educational Objectives.
New York: Addison Wesley Longman, Inc, 302 p.

Atherton, J. S. 2013. « Learning and Teaching; SOLO taxonomy [On-line: UK] ». <

http://www.learningandteaching.info/learning/solo.htm >. Consulté le 25 March
2013.

Beard, Colin M., and John Peter Wilson. 2006. Experiential Learning : A Handbook of Best

Practice for Educators and Trainers, Second edition. London: Kogan Page, 314 p.

Bhamani Kajornboon, Annabel 2005. « Using interviews as research instruments ». p. 10. <

www.culi.chula.ac.th/e-journal/bod/annabel.pdf >.

Biggs, John. 1995. « Assessing for learning : some dimensions underlying new approaches to

educational assessment ». Alberta journal of educational research, vol. 41, no 1, p. 1-
17.

Biggs, John, and Caherine Tang. 2007. Teaching for quality learning at university, Third

edition. Buckingham: Society for Research into Higher Education & Open University
Press, 335 p.

Bourque, P., A. Abran, J. Garbajosa, G. Keeni and B. Shen. 2008. « SWEBOK Version 3

». p. 18.< http://www2.computer.org/cms/Computer.org/SWEBOK/MeasurementKA-
Draft-Feb2008.pdf >. Consulté le October 15, 2010.

www.manaraa.com

132

Bourque, P., R. Dupuis, A. Abran, J. W. Moore, L. Tripp and S. Wolff. 2002. « Fundamental

principles of software engineering - a journey ». Journal of Systems and Software,
vol. 62, p. 59-70.

Bourque, Pierre. 2013. «SWEBOK V3 Review». <http://computer.centraldesktop.

com/swebokv3review/>. Consulté le September 23, 2013.

Brooks, Jacqueline G, and Martin G Brooks. 2001. In Search of Understanding: The Case for

Constructivist Classrooms. Coll. « Merrill Education/ASCD College Textbooks
Series ». Prentice-Hall, 136 p.

Buglione, Luigi. 2009. « Play’n’Learn: A Continuous KM Improvement Approach using

FSM Methods ». In 4th International Software Measurement & Analysis (ISMA4).
(Chicago, Illinois).

Bundschuh, Manfred, and Carol Dekkers. 2008. The IT Measurement Compendium.

Springer-Verlag, 643 p.

Bush, M., and N. Ashley. 1993. « Metkit: toolkit for metrics education ». Software, IEEE,

vol. 10, no 6, p. 52-54.

Bush, M., and M. Russell. 1992. « Need for well-balanced education in software engineering

measurement ». Software Quality Journal, vol. 1, no 2, p. 81-100.

Chudnovsky, D., A. López and S. Melitsko. 2001. « El sector de software y servicios

informáticos en la Argentina. Situación actual y perspectivas de desarrollo ». CENIT,
Documento de Trabajo Nº 27. <
http://www.google.com.ec/search?sourceid=navclient&ie=UTF-8&rlz=1T4ADRA_
enEC341EC341&q=El+sector+de+software+y+servicios+inform%c3%a1ticos+en+la
+Argentina.+Situaci%c3%b3n+actual+y+perspectivas+de+desarrollo >.

COSMIC. 2009. « The COSMIC Functional Size Measurement Method Version 3.0.1,

Measurement Manual (The COSMIC Implementation Guide for ISO/IEC
19761:2003) ». The Common Software Measurement International Consortium
(COSMIC). < http://www.cosmicon.com/portal/public/COSMIC%20Method%20
v3.0.1%20Measurement%20Manual.pdf >. Consulté le 22 December 2013.

Cuadrado-Gallego, J. J., P. Rodriguez-Soria, A. Lucendo, R. Neumann, R. Dumke and A.

Schmietendorf. 2012. « COSMIC Measurements Dispersion ». In Joint Conference of
the 22nd International Workshop on.Software Measurement and the Seventh
International Conference on Software Process and Product Measurement (IWSM-
MENSURA), 2012. (Assisi, 17-19 October 2012), p. 85-88.

www.manaraa.com

133

Cuadrado-Gallego, Juan, Herrera Borja Martin and Pablo Rodriguez Soria. 2011. « Visual
learning techniques for software measurement ». In 4th International Conference on
Computer Science and Software Engineering. (Montreal, Quebec, Canada), p. 59-62.
1992904: ACM.

Examiner. 2012. « Six Creative Ways to Form Groups ». < http://www.examiner.

com/article/six-creative-ways-to-form-groups >.

Fetcke, Thomas. 1999. « The Warehouse Software Portfolio, A Case Study in Functional

Size Measurement ». < http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.195.
5828 >.

Fosnot, Catherine. 2005. Constructivism: theory, perspectives, and practice. New York:

Teachers College Press, 308 p.

Garrison, Randy, and Walter Archer. 2000. A transactional perspective on teaching and

learning (September 1, 2000), First edition. Emerald Group Publishing Limited, 228
p.

Gatchell, D. W., R. A. Linsenmeier and T. R. Harris. 2004. « Determination of the core

undergraduate BME curriculum - the 1st step in a Delphi study ». In Conference
Proceedings. 26th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, 1-5 Sept. 2004. (Piscataway, NJ, USA) Vol. Vol.7, p.
5200-1. IEEE.

Gopal, A., M. S. Krishnan, T. Mukhopadhyay and D. R. Goldenson. 2002. « Measurement

programs in software development: determinants of success ». IEEE Transactions on
Software Engineering, , vol. 28, no 9, p. 863-875.

Gresse von Wangenheim, Christiane, Marcello Thiry and Djone Kochanski. 2009. «

Empirical evaluation of an educational game on software measurement ». Empirical
Software Engineering, vol. 14, no 4, p. 418-452.

Hagström, Eva, and Owe Lindberg. 2012. « Three theses on teaching and learning in higher

education ». Teaching in Higher Education, vol. 18, no 2, p. 119-128.

Hattie, John, and Helen Timperley. 2007. « The Power of Feedback ». Review of Educational

Research, vol. 77, no 1, p. 81-112.

Howze, Philip., and Connie. Dalrymple. 2004. « Consensus without all the meetings: using

the Delphi method to determine course content for library instruction ». Reference
Services Review, vol. 32, no 2, p. 174-84.

www.manaraa.com

134

Hung, Hsin-Ling, James W. Altschuld and Yi-Fang Lee. 2008. « Methodological and
conceptual issues confronting a cross-country Delphi study of educational program
evaluation ». Evaluation and Program Planning, vol. 31, no 2, p. 191-198.

IEEE ACM. 2004. « Curriculum Guidelines for Undergraduate Degree Programs in

Software Engineering ». Vol. SE2004 Volume – 8/23/2004, p. 135. <
http://sites.computer.org/ccse/SE2004Volume.pdf >.

Integrated Software & Systems Engineering Curriculum (iSSEc) project. 2009a. «

Comparisons of GSwE2009 to Current Master’s Programs in Software Engineering ».
Stevens Institute of Technology. Version 1.0. p. 96. <
http://www.gswe2009.org/fileadmin/files/GSwE2009_Curriculum_Docs/Comparison
stoGSwE2009_v1.0.pdf >.

Integrated Software & Systems Engineering Curriculum (iSSEc) Project. 2009b. « Graduate

Software Engineering 2009 (GSwE2009), Curriculum Guidelines for Graduate
Degree Programs in Software Engineering ». Stevens Institute of Technology. Version
1.0. p. 124. < http://www.gswe2009.org/fileadmin/files/GSwE2009_
Curriculum_Docs/GSwE2009_version_1.0.pdf >.

ISO/IEC. 2007. Information Technology - Software Measurement - Functional Size

Measurement. Part 1: Definition of Concepts. ISO/IEC 14143-1:2007 Switzerland:
International Organization for Standardization, 6 p.

Iversen, Jakob, and Ojelanki Ngwenyama. 2006. « Problems in measuring effectiveness in

software process improvement: A longitudinal study of organizational change at
Danske Data ». International Journal of Information Management, vol. 26, no 1, p.
30-43.

Izquierdo, E. 2008. « Impact Assessment of an Educational Intervention based on the

Constructivist Paradigm on the Development of Entrepreneurial Competencies in
University Students ». Ghent, Ghent University, 245 p.

Jones, Caper. (662). 2008. Applied Software Measurement: Global Analysis of Productivity

and Quality, Third. McGraw-Hill Osborne Media.

Kay, Robin. 2011. « Evaluating learning, design, and engagement in web-based learning

tools (WBLTs): The WBLT Evaluation Scale ». Computers in Human Behavior, vol.
27, no 5, p. 1849-1856.

Knox, Grahame 2009. « 40 Ice breakers for small groups ». p. 21. <

http://insight.typepad.co.uk/40_icebreakers_for_small_groups.pdf >.

www.manaraa.com

135

Larkin, Helen, and Ben Richardson. 2012. « Creating high challenge/high support academic
environments through constructive alignment: student outcomes ». Teaching in
Higher Education, vol. 18, no 2, p. 192-204.

Leedy, Paul, and Jeanne Ellis Ormrod. 2010. Practical research: planning and design, Ninth

edition. Pearson.

Lindsey, Lee, and Nancy Berger. 2009. « Experiential approach to instruction ». In

Instructional-Design Theories and Models, sous la dir. de Reigeluth, Charles, and
Alison Carr-Chellman. Vol. III, p. 117-142. New York: Routledge, Taylor & Francis
Group

Lupton, Mandy. 2012. « Reclaiming the art of teaching ». Teaching in Higher Education,

vol. 18, no 2, p. 156-166.

McAuliffe, Garrett, and Karen Eriksen. 2011. Handbook of Counselor Preparation :

Constructivist, Developmental, and Experiential Approaches. California: SAGE
publications, Inc.

Network, HandsOn. 2006. « Team Building Exercises for College Students ». p. 4. <

http://www.nationalserviceresources.org/files/BP_TeambuildingExercises_2010_HO
N.pdf >. Consulté le 22 December 2013.

Nunnally, Jum, and Ira Bernstein. 1994. Psychometric theory, Third. Coll. « McGraw-Hill

Series in Psychology ». New York: McGraw-Hill 793 p.

Okoli, Chitu, and Suzanne D. Pawlowski. 2004. « The Delphi method as a research tool: an

example, design considerations and applications ». Information & Management, vol.
42, no 1, p. 15-29.

Pelech, James, and Gail Pieper (215). 2010. The Comprehensive Handbook of Constructivist

Teaching. Charlotte, NC: Information Age Publishing, INC.

Pritchard, Alan , and John Woollard (106). 2010. Psychology for the Classroom:

Constructivism and Social Learning. London and New York: Routledge, Taylor &
Francis group.

Rainer, Austen, and Tracy Hall. 2003. « A quantitative and qualitative analysis of factors

affecting software processes ». Journal of Systems and Software, vol. 66, no 1, p. 7-
21.

Reigeluth, Charles;, and Alison; Carr-Chellman. 2009. « Situational Principles of Instruction

». In Instructional-design theories and models, sous la dir. de Reigeluth, Charles;, and
Alison; Carr-Chellman. Vol. III, p. 57-71. New York: Routledge, Taylor & Francis
Group

www.manaraa.com

136

Romiszowski, Alexander. 2009. « Fostering skill development outcomes ». In Instructional

design theories and models, sous la dir. de Reigeluth, Charles, and Alison Carr-
Chellman. Vol. III, p. 199-224. New York: Routledge, Taylor & Francis Group.

SAGE Research Methods. 2013. « Encyclopedia of Survey Research Methods ». <

http://srmo.sagepub.com/view/encyclopedia-of-survey-research-methods/SAGE.xml
>.

Salazar, Danny, Mónica Villavicencio, Verónica Macías and Monique Snoeck. 2004. «

Estudio estadístico exploratorio de las empresas desarrolladoras de software
asentadas en Guayaquil, Quito y Cuenca ». In Jornadas Argentinas de Informática e
Investigación Operativa 2004 (Córdoba, Argentina, 20 al 24 de Septiembre de 2004),
33 Edition. < http://www.cs.famaf.unc.edu.ar/33JAIIO/ >.

Stamelos, I., I. Refanidis, P. Katsaros, A. Tsoukias, I. Vlahavas and A. Pombortsis. 2000. «

An Adaptable Framework for Educational Software Evaluation ». Decision Making:
Recent Developments and Worldwide Applications. Vol. 45, p. 347-360. <
http://dx.doi.org/10.1007/978-1-4757-4919-9_23 >. Consulté le October 10, 2013.

Staples, Mark, and Mahmood Niazi. 2008. « Systematic review of organizational motivations

for adopting CMM-based SPI ». Information and Software Technology, vol. 50, no 7-
8, p. 605-620.

Suskie, Linda A. 2009. Assessing student learning : a common sense guide : JB-Anker

Series.

The Centre for Teaching Excellence. 2013. « Teaching problem-solving skills ». <

https://uwaterloo.ca/centre-for-teaching-excellence/teaching-resources/teaching-
tips/developing-assignments/cross-discipline-skills/teaching-problem-solving-skills
>. Consulté le July 2013.

The Joint Task Force on Computing Curricula Association for Computing Machinery IEEE-

Computer Society. 2013. « Computer Science Curricula 2013, Ironman Draft
(Version 1.0) ». p. 376. < http://ai.stanford.edu/users/sahami/CS2013/ironman-
draft/cs2013-ironman-v1.0.pdf >.

Trienekens, J. J. M., R. J. Kusters, M. J. I. M. van Genuchten and H. Aerts. 2007. « Targets,

drivers and metrics in software process improvement: results of a survey in a
multinational organization ». Software Quality Journal, vol. 15, no 2, p. 135-153.

Trudel, Sylvie. 2012. Exercice pratique de mesure. 4 p.

Villavicencio, M., and A. Abran. 2011a. « Educational Issues in the Teaching of Software

Measurement in Software Engineering Undergraduate Programs ». In Joint

www.manaraa.com

137

Conference of the 21st Int'l Workshop on Software Measurement and 6th Int'l
Conference on Software Process and Product Measurement (IWSM-MENSURA).
(Nara, Japan, 3-4 Nov. 2011), p. 239-244.

Villavicencio, Monica, and Alain Abran. 2011b. « Facts and Perceptions Regarding Software

Measurement in Education and in Practice: Preliminary Results ». Journal of
Software Engineering and Applications vol. 4, no 4, p. 227-234.

Villavicencio, Mónica, and Alain Abran. 2010. « Software Measurement in Software

Engineering Education: A Comparative Analysis ». In International Conferences on
Software Measurement IWSM/MetriKon/Mensura. (Stuttgart, Germany, 10-12
November, 2010), p. 633-644. Shaker Verlag.

Weber, Charles, and Beth Layman. 2002. « Measurement Maturity and the CMM: How

Measurement Practices Evolve as Processes Mature ». Vol. 4, no 3, p. 15. <
http://www.compaid.com/caiinternet/ezine/layman-CMM.pdf >.

Webster, Allen L. 2000. Estadistica aplicada a los negocios y a la economia, Tercera. Santa

Fe de Bogota: Irwin McGraw-Hill, 640 p.

Yazbek, Hashem. 2010. « Metrics Support in Industrial CASE Tools ». Software

Measurement News: Journal of the Software Metrics Community (Magdeburg).
August 2010, p. 40.

Zuse, Horst. 1998. A framework of software measurement. Berlin: Walter de Gruyter & Co.

